Starkov A A, Wallace K B
Department of Biochemistry and Molecular Biology, University of Minnesota School of Medicine, 10 University Drive, Duluth, Minnesota, USA.
Toxicol Sci. 2002 Apr;66(2):244-52. doi: 10.1093/toxsci/66.2.244.
Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are thought to induce peroxisome proliferation and interfere with mitochondrial metabolic pathways. Direct measurements revealed that PFOA and the unsubstituted sulfonamide of perfluorooctane (FOSA) uncouple mitochondrial respiration by increasing proton conductance. The purpose of this investigation was to characterize structural determinants responsible for the mitochondrial uncoupling effect of several structurally related fluorochemicals. Included in the study were PFOA, PFOS, FOSA, the N-acetate of FOSA (perfluorooctanesulfonamidoacetate, FOSAA), N-ethylperfluorooctanesulfonamide (N-EtFOSA), and the N-ethyl alcohol [2-(N-ethylperfluorooctanesulfonamido)ethyl alcohol, N-EtFOSE] and N-acetic acid (N-ethylperfluorooctanesulfonamidoacetate, N-EtFOSAA) of N-EtFOSA. Each test compound was dissolved in ethanol and added directly to an incubation medium containing substrate-energized rat liver mitochondria. Mitochondrial respiration and membrane potential were measured concurrently using an oxygen electrode and a TPP+ -selective electrode, respectively. All of the compounds tested, at sufficiently high concentrations, had the capacity to interfere with mitochondrial respiration, albeit via different mechanisms and with varying potencies. At sufficiently high concentrations, the free acids PFOA and PFOS caused a slight increase in the intrinsic proton leak of the mitochondrial inner membrane, which resembled a surfactant-like change in membrane fluidity. Similar effects were observed with the sulfonamide N-EtFOSE. Another fully substituted sulfonamide, N-EtFOSAA, at high concentrations caused inhibition of respiration, the release of cytochrome c, and high-amplitude swelling of mitochondria. The swelling was prevented by cyclosporin A or by EGTA, indicating that this compound induced the mitochondrial permeability transition. The unsubstituted and mono-substituted amides FOSA, N-EtFOSA, and FOSAA all exerted a strong uncoupling effect on mitochondria resembling that of protonophoric uncouplers. Among these compounds, FOSA was a very potent uncoupler of oxidative phosphorylation, with an IC50 of approximately 1 microM. These data suggest that the protonated nitrogen atom with a favorable pKa is essential for the uncoupling action of perfluorooctane sulfonamides in mitochondria, which may be critical to the mechanism by which these compounds interfere with mitochondrial metabolism to induce peroxisome proliferation in vivo.
全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)被认为可诱导过氧化物酶体增殖并干扰线粒体代谢途径。直接测量结果表明,PFOA和全氟辛烷的未取代磺酰胺(FOSA)通过增加质子传导来解偶联线粒体呼吸。本研究的目的是确定几种结构相关的含氟化合物线粒体解偶联效应的结构决定因素。该研究包括PFOA、PFOS、FOSA、FOSA的N - 乙酸酯(全氟辛烷磺酰胺乙酸酯,FOSAA)、N - 乙基全氟辛烷磺酰胺(N - EtFOSA)以及N - EtFOSA的N - 乙醇[2 -(N - 乙基全氟辛烷磺酰胺基)乙醇,N - EtFOSE]和N - 乙酸(N - 乙基全氟辛烷磺酰胺乙酸酯,N - EtFOSAA)。将每种测试化合物溶解在乙醇中,然后直接添加到含有底物供能的大鼠肝线粒体中培养的培养基中。分别使用氧电极和TPP⁺选择性电极同时测量线粒体呼吸和膜电位。所有测试的化合物在足够高的浓度下都有能力干扰线粒体呼吸,尽管其作用机制不同且效力各异。在足够高的浓度下,游离酸PFOA和PFOS会使线粒体内膜的固有质子泄漏略有增加,这类似于膜流动性的表面活性剂样变化。磺酰胺N - EtFOSE也观察到类似的效果。另一种完全取代的磺酰胺N - EtFOSAA在高浓度下会抑制呼吸、释放细胞色素c并导致线粒体高幅度肿胀。环孢菌素A或EGTA可防止肿胀,表明该化合物诱导了线粒体通透性转变。未取代和单取代的酰胺FOSA、N - EtFOSA和FOSAA均对线粒体产生强烈的解偶联作用,类似于质子载体解偶联剂。在这些化合物中,FOSA是氧化磷酸化的非常有效的解偶联剂,IC50约为1 microM。这些数据表明,具有合适pKa的质子化氮原子对于全氟辛烷磺酰胺在线粒体中的解偶联作用至关重要,这可能是这些化合物干扰线粒体代谢以在体内诱导过氧化物酶体增殖机制的关键。