Schwille P
Experimental Biophysics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
Cell Biochem Biophys. 2001;34(3):383-408. doi: 10.1385/CBB:34:3:383.
Fluorescence correlation spectroscopy (FCS) is a time-averaging fluctuation analysis of small molecular ensembles, combining maximum sensitivity with high statistical confidence. Among a multitude of physical parameters that are, in principle, accessible by FCS, it most conveniently allows to determine local concentrations, mobility coefficients, and characteristic rate constants of fast-reversible and slow-irreversible reactions of fluorescently labeled biomolecules at very low (nanomolar) concentrations, under equilibrium conditions and without physical separation. Its presently most popular instrumentation by confocal-microscope setups allows for a spatial resolution of fractions of femtoliters for the measurement volumes, containing sparse or even single molecules at any time, and encourages the adaptation of the solution-based technique for cellular applications. The scope of this review is thus, to introduce the FCS technique in particular to the reader with biological background, searching for new methods for a precise quantification of physical parameters governing cellular mechanisms and dynamics, especially if high sensitivity and fast dynamic resolution are required. After a short theoretical introduction, examples are given for the so far most important experimental applications, with respect to their implementation in cellular systems. As an interesting alternative to the confocal instrumentation, two-photon excitation will be introduced, offering a number of important advantages especially in cellular systems with high-noise and low-signal levels.
荧光相关光谱法(FCS)是一种对小分子集合体进行时间平均的涨落分析方法,它结合了高灵敏度和高统计置信度。在原则上可通过FCS获取的众多物理参数中,它最便于在平衡条件下且无需物理分离的情况下,测定极低(纳摩尔)浓度下荧光标记生物分子的快速可逆和慢速不可逆反应的局部浓度、迁移率系数以及特征速率常数。目前其最流行的仪器配置是共聚焦显微镜装置,测量体积的空间分辨率可达飞升至量级,随时包含稀疏甚至单个分子,并促使将这种基于溶液的技术应用于细胞研究。因此,本综述的目的是特别向具有生物学背景的读者介绍FCS技术,这些读者正在寻找新方法来精确量化控制细胞机制和动态的物理参数,特别是在需要高灵敏度和快速动态分辨率的情况下。在简短的理论介绍之后,将给出关于其在细胞系统中的应用的迄今最重要的实验示例。作为共聚焦仪器的一种有趣替代方案,将介绍双光子激发,它具有许多重要优势,特别是在高噪声和低信号水平的细胞系统中。