Suppr超能文献

化学和物理性质及潜在机制:褪黑素作为一种广谱抗氧化剂和自由基清除剂。

Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger.

作者信息

Tan Dun-xian, Reiter Russel J, Manchester Lucien C, Yan Mei-ting, El-Sawi Mamdouh, Sainz Rosa M, Mayo Juan C, Kohen Ron, Allegra Mario, Hardeland Rudiger

机构信息

Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78229-3900, USA.

出版信息

Curr Top Med Chem. 2002 Feb;2(2):181-97. doi: 10.2174/1568026023394443.

Abstract

Melatonin was found to be a potent free radical scavenger in 1993. Since then over 800 publications have directly or indirectly confirmed this observation. Melatonin scavenges a variety of reactive oxygen and nitrogen species including hydroxyl radical, hydrogen peroxide, singlet oxygen, nitric oxide and peroxynitrite anion. Based on the analyses of structure-activity relationships, the indole moiety of the melatonin molecule is the reactive center of interaction with oxidants due to its high resonance stability and very low activation energy barrier towards the free radical reactions. However, the methoxy and amide side chains also contribute significantly to melatonin's antioxidant capacity. The N-C=O structure in the C3 amide side chain is the functional group. The carbonyl group in the structure of N-C=O is key for melatonin to scavenge the second reactive species and the nitrogen in the N-C=O structure is necessary for melatonin to form the new five membered ring after melatonin's interaction with a reactive species. The methoxy group in C5 appears to keep melatonin from exhibiting prooxidative activity. If the methoxy group is replaced by a hydroxyl group, under some in vitro conditions, the antioxidant capacity of this molecule may be enhanced. However, the cost of this change are decreased lipophility and increased prooxidative potential. Therefore, in in vivo studies the antioxidant efficacy of melatonin appears to be superior to its hydroxylated counterpart. The mechanisms of melatonin's interaction with reactive species probably involves donation of an electron to form the melatoninyl cation radical or through an radical addition at the site C3. Other possibilities include hydrogen donation from the nitrogen atom or substitution at position C2, C4 and C7 and nitrosation. Melatonin also has the ability to repair damaged biomolecules as shown by the fact that it converts the guanosine radical to guanosine by electron transfer. Unlike the classical antioxidants, melatonin is devoid of prooxidative activity and all known intermediates generated by the interaction of melatonin with reactive species are also free radical scavengers. This phenomenon is defined as the free radical scavenging cascade reaction of the melatonin family. Due to this cascade, one melatonin molecule has the potential to scavenge up to 4 or more reactive species. This makes melatonin very effective as an antioxidant. Under in vivo conditions, melatonin is often several times more potent than vitamin C and E in protecting tissues from oxidative injury when compared at an equivalent dosage (micromol/kg). Future research in the field of melatonin as a free radical scavenger might be focused on: 1), signal transduction and antioxidant enzyme gene expression induced by melatonin and its metabolites, 2), melatonin levels in tissues and in cells, 3), melatonin structure modifications, 4), melatonin and its metabolites in plants and, 5), clinical trials using melatonin to treat free radical related diseases such as Alzheimer's, Parkinson's, stroke and heart disease.

摘要

1993年,褪黑素被发现是一种强大的自由基清除剂。从那时起,超过800篇出版物直接或间接证实了这一观察结果。褪黑素能清除多种活性氧和氮物种,包括羟基自由基、过氧化氢、单线态氧、一氧化氮和过氧亚硝酸盐阴离子。基于结构 - 活性关系分析,褪黑素分子的吲哚部分是与氧化剂相互作用的反应中心,这是由于其具有高共振稳定性以及对自由基反应极低的活化能垒。然而,甲氧基和酰胺侧链对褪黑素的抗氧化能力也有显著贡献。C3酰胺侧链中的N - C = O结构是官能团。N - C = O结构中的羰基是褪黑素清除第二种反应性物种的关键,而N - C = O结构中的氮对于褪黑素与反应性物种相互作用后形成新的五元环是必需的。C5上的甲氧基似乎能防止褪黑素表现出促氧化活性。如果甲氧基被羟基取代,在某些体外条件下该分子的抗氧化能力可能会增强。然而,这种变化的代价是亲脂性降低和促氧化潜力增加。因此在体内研究中,褪黑素的抗氧化功效似乎优于其羟基化类似物。褪黑素与反应性物种相互作用的机制可能涉及电子转移形成褪黑素阳离子自由基或通过C3位点的自由基加成。其他可能性包括从氮原子供氢或在C2、C4和C7位置的取代以及亚硝化。褪黑素还具有修复受损生物分子的能力,这表现为它通过电子转移将鸟苷自由基转化为鸟苷。与经典抗氧化剂不同,褪黑素没有促氧化活性,并且褪黑素与反应性物种相互作用产生的所有已知中间体也是自由基清除剂。这种现象被定义为褪黑素家族的自由基清除级联反应。由于这种级联反应,一个褪黑素分子有可能清除多达4个或更多的反应性物种。这使得褪黑素作为抗氧化剂非常有效。在体内条件下,当以等效剂量(微摩尔/千克)比较时,褪黑素在保护组织免受氧化损伤方面通常比维生素C和E强几倍。未来关于褪黑素作为自由基清除剂领域的研究可能集中在:1)褪黑素及其代谢产物诱导的信号转导和抗氧化酶基因表达,2)组织和细胞中的褪黑素水平,3)褪黑素结构修饰,4)植物中的褪黑素及其代谢产物,以及5)使用褪黑素治疗与自由基相关疾病(如阿尔茨海默病、帕金森病、中风和心脏病)的临床试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验