Eastgate L O, Sethna J P, Rauscher M, Cretegny T, Chen C-S, Myers C R
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036117. doi: 10.1103/PhysRevE.65.036117. Epub 2002 Feb 13.
We present a continuum phase-field model of crack propagation. It includes a phase-field that is proportional to the mass density and a displacement field that is governed by linear elastic theory. Generic macroscopic crack growth laws emerge naturally from this model. In contrast to classical continuum fracture mechanics simulations, our model avoids numerical front tracking. The added phase-field smooths the sharp interface, enabling us to use equations of motion for the material (grounded in basic physical principles) rather than for the interface (which often are deduced from complicated theories or empirical observations). The interface dynamics thus emerges naturally. In this paper, we look at stationary solutions of the model, mode I fracture, and also discuss numerical issues. We find that the Griffith's threshold underestimates the critical value at which our system fractures due to long wavelength modes excited by the fracture process.
我们提出了一种裂纹扩展的连续体相场模型。它包括一个与质量密度成正比的相场和一个由线性弹性理论支配的位移场。通用的宏观裂纹扩展定律自然地从该模型中产生。与经典连续体断裂力学模拟不同,我们的模型避免了数值前沿追踪。添加的相场使尖锐界面变得平滑,使我们能够使用基于基本物理原理的材料运动方程,而不是基于复杂理论或经验观察推导出来的界面运动方程。界面动力学因此自然出现。在本文中,我们研究了该模型的稳态解、I型断裂,并讨论了数值问题。我们发现,由于断裂过程激发的长波长模式,格里菲斯阈值低估了我们系统发生断裂的临界值。