Suppr超能文献

拉普拉斯生长中钉扎转变的共形映射建模

Conformal map modeling of the pinning transition in Laplacian growth.

作者信息

Hentschel H G E, Popescu M N, Family F

机构信息

Department of Physics, Emory University, Atlanta, Georgia 30322, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036141. doi: 10.1103/PhysRevE.65.036141. Epub 2002 Mar 6.

Abstract

In Laplacian growth processes pinning may be expected due to a nonlinear response of a material during dielectric breakdown, or due to stick-slip boundary conditions in two-fluid flow in a porous medium, while thermal noise will lead to depinning. Using a method recently proposed by Hastings and Levitov, the size R(max) approximately E(-alpha)(c) of the pinned pattern is shown to scale with the critical field E(c) (electric field for dielectric breakdown, pressure gradient for fluid flow). These pinned patterns have a lower effective fractal dimension d(f) than diffusion-limited aggregation due to the enhancement of growth at the hot tips of the developing pattern. At finite temperature, thermal noise leads to depinning and growth of patterns with a shape and dimensionality dependent on both E(c) and the thermal noise. Using multifractal analysis, scaling expressions are established for this dependency.

摘要

在拉普拉斯生长过程中,由于材料在介电击穿期间的非线性响应,或者由于多孔介质中双流体流动中的粘滑边界条件,可能会出现钉扎现象,而热噪声会导致去钉扎。使用黑斯廷斯和列维托夫最近提出的一种方法,已表明钉扎图案的大小(R_{(max)})近似为(E^{(-\alpha)}{(c)}),它与临界场(E{(c)})(介电击穿的电场、流体流动的压力梯度)成比例。由于发展图案热尖端处生长的增强,这些钉扎图案的有效分形维数(d_{(f)})比扩散限制聚集的要低。在有限温度下,热噪声导致去钉扎以及具有取决于(E_{(c)})和热噪声的形状和维度的图案生长。使用多重分形分析,建立了这种依赖性的标度表达式。

相似文献

1
Conformal map modeling of the pinning transition in Laplacian growth.拉普拉斯生长中钉扎转变的共形映射建模
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036141. doi: 10.1103/PhysRevE.65.036141. Epub 2002 Mar 6.
2
Diffusion-limited aggregation with power-law pinning.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jan;69(1 Pt 1):011403. doi: 10.1103/PhysRevE.69.011403. Epub 2004 Jan 27.
3
Transition in the fractal properties from diffusion-limited aggregation to Laplacian growth via their generalization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016308. doi: 10.1103/PhysRevE.66.016308. Epub 2002 Jul 29.
4
Iterated conformal dynamics and Laplacian growth.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 2A):046144. doi: 10.1103/PhysRevE.65.046144. Epub 2002 Apr 11.
6
Dynamics of conformal maps for a class of non-Laplacian growth phenomena.
Phys Rev Lett. 2003 Jul 25;91(4):045503. doi: 10.1103/PhysRevLett.91.045503. Epub 2003 Jul 23.
7
Growth by random walker sampling and scaling of the dielectric breakdown model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051403. doi: 10.1103/PhysRevE.70.051403. Epub 2004 Nov 17.
8
Length scales and pinning of interfaces.长度尺度与界面钉扎
Philos Trans A Math Phys Eng Sci. 2016 Apr 28;374(2066). doi: 10.1098/rsta.2015.0167.
9
Nonlinear driven response of a phase-field crystal in a periodic pinning potential.周期钉扎势场中相场晶体的非线性驱动响应
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011606. doi: 10.1103/PhysRevE.79.011606. Epub 2009 Jan 26.
10
Scaling of the density of state of the weighted Laplacian in the presence of fractal boundaries.存在分形边界时加权拉普拉斯算子态密度的标度
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 2):027202. doi: 10.1103/PhysRevE.81.027202. Epub 2010 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验