Suppr超能文献

由黑斯廷斯-列维托夫方法生成的扩散限制凝聚体周长的标度和多重标度行为。

Scaling and multiscaling behavior of the perimeter of a diffusion-limited aggregation generated by the Hastings-Levitov method.

作者信息

Mohammadi F, Saberi A A, Rouhani S

机构信息

Department of Physics, Sharif University of Technology, PO Box 11155-9161, Tehran, Iran.

出版信息

J Phys Condens Matter. 2009 Sep 16;21(37):375110. doi: 10.1088/0953-8984/21/37/375110. Epub 2009 Aug 21.

Abstract

In this paper, we analyze the scaling behavior of a diffusion-limited aggregation (DLA) simulated by the Hastings-Levitov method. We obtain the fractal dimension of the clusters by direct analysis of the geometrical patterns, in good agreement with one obtained from an analytical approach. We compute the two-point density correlation function and we show that, in the large-size limit, it agrees with the obtained fractal dimension. These support the statistical agreement between the patterns and DLA clusters. We also investigate the scaling properties of various length scales and their fluctuations, related to the boundary of the cluster. We find that all of the length scales do not have a simple scaling with the same correction to scaling exponent. The fractal dimension of the perimeter is obtained equal to that of the cluster. The growth exponent is computed from the evolution of the interface width equal to β = 0.557(2). We also show that the perimeter of the DLA cluster has an asymptotic multiscaling behavior.

摘要

在本文中,我们分析了用黑斯廷斯 - 列维托夫方法模拟的扩散限制凝聚(DLA)的标度行为。我们通过直接分析几何图案获得团簇的分形维数,这与从解析方法得到的结果吻合良好。我们计算了两点密度关联函数,并表明在大尺寸极限下,它与所获得的分形维数一致。这些都支持了图案与DLA团簇之间的统计一致性。我们还研究了与团簇边界相关的各种长度尺度及其涨落的标度性质。我们发现并非所有长度尺度都具有相同的标度修正指数的简单标度。得到周长的分形维数与团簇的分形维数相等。从界面宽度的演化计算出生长指数为β = 0.557(2)。我们还表明DLA团簇的周长具有渐近多重标度行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验