Pelzl Paul J, Smethells Gregory J, King Frederick W
Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2B):036707. doi: 10.1103/PhysRevE.65.036707. Epub 2002 Feb 27.
Convergence accelerator methods are employed to analyze some of the most difficult three-electron integrals that arise in atomic calculations. These integrals have an explicit dependence on the interelectronic coordinates, and take the form integral r(i)(1)r(j)(2)r(k)(3)r(l)(23)r(m)(31)r(n)(12) exp((-alpha(r1)-beta(r2)-gamma(r3))dr(1)dr(2)dr(3). The focus of the present investigation are the most difficult cases of the parameter set [i, j, k, l, m, n]. Several convergence accelerator techniques are studied, and a comparison presenting the relative effectiveness of each technique is reported. When the convergence accelerator approach is combined with specialized numerical quadrature methods, we find that the overall technique yields high-precision results and is fairly efficient in terms of computational resources. Difficulties associated with the standard numerical precision loss of convergence accelerator techniques are circumvented.
采用收敛加速器方法来分析原子计算中出现的一些最难的三电子积分。这些积分明确依赖于电子间坐标,其形式为积分r(i)(1)r(j)(2)r(k)(3)r(l)(23)r(m)(31)r(n)(12) exp((-α(r1)-β(r2)-γ(r3))dr(1)dr(2)dr(3)。本研究的重点是参数集[i, j, k, l, m, n]中最难的情况。研究了几种收敛加速器技术,并报告了展示每种技术相对有效性的比较结果。当收敛加速器方法与专门的数值求积方法相结合时,我们发现整体技术能产生高精度结果,并且在计算资源方面相当高效。避免了与收敛加速器技术的标准数值精度损失相关的困难。