Suppr超能文献

Glycon specificity profiling of alpha-glucosidases using monodeoxy and mono-O-methyl derivatives of p-nitrophenyl alpha-D-glucopyranoside.

作者信息

Nishio Toshiyuki, Hakamata Wataru, Kimura Atsuo, Chiba Seiya, Takatsuki Akira, Kawachi Ryu, Oku Tadatake

机构信息

Laboratory of Bio-organic Chemistry, Department of Biological Chemistry, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan.

出版信息

Carbohydr Res. 2002 Apr 2;337(7):629-34. doi: 10.1016/s0008-6215(02)00026-5.

Abstract

Hydrolysis of probe substrates, eight possible monodeoxy and mono-O-methyl analogs of p-nitrophenyl alpha-D-glucopyranoside (pNP alpha-D-Glc), modified at the C-2, C-3, C-4, and C-6 positions, was studied as part of investigations into the glycon specificities of seven alpha-glucosidases (EC 3.2.1.20) isolated from Saccharomyces cerevisiae, Bacillus stearothermophilus, honeybee (two enzymes), sugar beet, flint corn, and Aspergillus niger. The glucosidases from sugar beet, flint corn, and A. niger were found to hydrolyze the 2-deoxy analogs with substantially higher activities than against pNP alpha-D-Glc. Moreover, the flint corn and A. niger enzymes showed hydrolyzing activities, although low, for the 3-deoxy analog. The other four alpha-glucosidases did not exhibit any activities for either the 2- or the 3-deoxy analogs. None of the seven enzymes exhibited any activities toward the 4-deoxy, 6-deoxy, or any of the methoxy analogs. The hydrolysis results, with the deoxy substrate analogs, demonstrated that alpha-glucosidases having remarkably different glycon specificities exist in nature. Further insight into the hydrolysis of deoxyglycosides was obtained by determining the kinetic parameters (k(cat) and K(m)) for the reactions of sugar beet, flint corn, and A. niger enzymes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验