Suppr超能文献

估计直接效应时的易误性。

Fallibility in estimating direct effects.

作者信息

Cole Stephen R, Hernán Miguel A

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

出版信息

Int J Epidemiol. 2002 Feb;31(1):163-5. doi: 10.1093/ije/31.1.163.

Abstract

We use causal graphs and a partly hypothetical example from the Physicians' Health Study to explain why a common standard method for quantifying direct effects (i.e. stratifying on the intermediate variable) may be flawed. Estimating direct effects without bias requires that two assumptions hold, namely the absence of unmeasured confounding for (1) exposure and outcome, and (2) the intermediate variable and outcome. Recommendations include collecting and incorporating potential confounders for the causal effect of the mediator on the outcome, as well as the causal effect of the exposure on the outcome, and clearly stating the additional assumption that there is no unmeasured confounding for the causal effect of the mediator on the outcome.

摘要

我们使用因果图以及来自医生健康研究的一个部分假设的例子来解释为什么一种用于量化直接效应的常见标准方法(即在中间变量上进行分层)可能存在缺陷。无偏估计直接效应需要两个假设成立,即对于(1)暴露与结局,以及(2)中间变量与结局不存在未测量的混杂因素。建议包括收集并纳入关于中介变量对结局的因果效应以及暴露对结局的因果效应的潜在混杂因素,并明确说明关于中介变量对结局的因果效应不存在未测量的混杂因素这一额外假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验