Zhang Jianzhi, Rosenberg Helene F
Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5486-91. doi: 10.1073/pnas.072626199. Epub 2002 Mar 26.
An improved understanding of the evolution of gene function at the molecular level may provide significant insights into the origin of biological novelty and adaptation. With the approach of ancestral protein reconstruction, we here address the question of how a dramatically enhanced ribonucleolytic activity and the related antiviral activity evolved in a recently duplicated ribonuclease (eosinophil-derived neurotoxin) gene of higher primates. We show that the mother gene of the duplicated genes had already possessed a weak antiviral activity before duplication. After duplication, substitutions at two interacting sites (Arg-64-->Ser and Thr-132-->Arg) resulted in a 13-fold enhancement of the ribonucleolytic activity of eosinophil-derived neurotoxin. These substitutions are also necessary for the potent antiviral activity, with contributions from additional amino acid changes at interacting sites. Our observation that a change in eosinophil-derived neurotoxin function occurs only when both interacting sites are altered indicates the importance of complementary substitutions in protein evolution. Thus, neutral substitutions are not simply "noises" in protein evolution, as many have thought. They may play constructive roles by setting the intramolecular microenvironment for further complementary advantageous substitutions, which can lead to improved or altered function. Overall, our study illustrates the power of the "paleomolecular biochemistry" approach in delineating the complex interplays of amino acid substitutions in evolution and in identifying the molecular basis of biological innovation.
在分子水平上对基因功能进化的深入理解,可能为生物新特性和适应性的起源提供重要见解。通过祖先蛋白重建的方法,我们在此探讨了在高等灵长类动物最近复制的核糖核酸酶(嗜酸性粒细胞衍生神经毒素)基因中,显著增强的核糖核酸酶活性和相关抗病毒活性是如何进化的这一问题。我们发现,复制基因的母基因在复制前就已经具有微弱的抗病毒活性。复制后,两个相互作用位点(精氨酸64位突变为丝氨酸,苏氨酸132位突变为精氨酸)的替换导致嗜酸性粒细胞衍生神经毒素的核糖核酸酶活性提高了13倍。这些替换对于强大的抗病毒活性也是必需的,相互作用位点上的其他氨基酸变化也有贡献。我们观察到,只有当两个相互作用位点都发生改变时,嗜酸性粒细胞衍生神经毒素的功能才会发生变化,这表明互补替换在蛋白质进化中的重要性。因此,中性替换并不像许多人认为的那样,仅仅是蛋白质进化中的“噪音”。它们可能通过为进一步的互补性有利替换设定分子内微环境来发挥建设性作用,从而导致功能的改善或改变。总体而言,我们的研究说明了“古分子生物化学”方法在描绘进化中氨基酸替换的复杂相互作用以及确定生物创新的分子基础方面的强大作用。