Suppr超能文献

酶超家族中与生物学功能相关的动力学守恒。

Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.

机构信息

INRS - Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.

Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.

出版信息

Structure. 2018 Mar 6;26(3):426-436.e3. doi: 10.1016/j.str.2018.01.015. Epub 2018 Feb 22.

Abstract

Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 10 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily.

摘要

酶超家族成员具有共同的化学和/或生物学功能,也具有共同的特征。虽然结构的作用已经得到很好的描述,但酶功能与动力学之间的联系还不太清楚。我们对具有共同结构折叠的 20 多个胰腺型核糖核酸酶超家族成员的固有动力学进行了系统的描述。这项研究的动机是核糖核酸酶同源物的化学活性和分子运动范围跨越了 10 倍以上。动力学特性是通过核磁共振实验和计算机模拟相结合来描述的。系统发生聚类将序列分为功能不同的亚家族。对不同核糖核酸酶的详细特征分析表明,亚家族内的酶具有保守的动力学特征。这些结果表明,除其他因素外,选择性压力可能与酶超家族中不同的化学和生物学功能有关,以保持动力学行为。

相似文献

1
Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.
Structure. 2018 Mar 6;26(3):426-436.e3. doi: 10.1016/j.str.2018.01.015. Epub 2018 Feb 22.
2
Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily.
FEBS J. 2013 Nov;280(22):5596-607. doi: 10.1111/febs.12371. Epub 2013 Jun 24.
3
5
Ribonucleases and angiogenins from fish.
J Biol Chem. 2006 Sep 15;281(37):27454-60. doi: 10.1074/jbc.M605505200. Epub 2006 Jul 21.
6
Conservation of flexible residue clusters among structural and functional enzyme homologues.
J Biol Chem. 2012 Dec 28;287(53):44289-300. doi: 10.1074/jbc.M112.394866. Epub 2012 Nov 7.
7
A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish.
Biochem J. 2011 Jan 15;433(2):345-55. doi: 10.1042/BJ20100892.
9
Enzyme dynamics along the reaction coordinate: critical role of a conserved residue.
Biochemistry. 2006 Feb 28;45(8):2636-47. doi: 10.1021/bi0525066.

引用本文的文献

1
Sequence - dynamics - function relationships in protein tyrosine phosphatases.
QRB Discov. 2024 Jan 24;5:e4. doi: 10.1017/qrd.2024.3. eCollection 2024.
2
A multi-layered computational structural genomics approach enhances domain-specific interpretation of Kleefstra syndrome variants in EHMT1.
Comput Struct Biotechnol J. 2023 Oct 13;21:5249-5258. doi: 10.1016/j.csbj.2023.10.022. eCollection 2023.
3
Identifying structural and dynamic changes during the Biliverdin Reductase B catalytic cycle.
Front Mol Biosci. 2023 Aug 14;10:1244587. doi: 10.3389/fmolb.2023.1244587. eCollection 2023.
4
Loop dynamics and the evolution of enzyme activity.
Nat Rev Chem. 2023 Aug;7(8):536-547. doi: 10.1038/s41570-023-00495-w. Epub 2023 May 24.
5
Conformational exchange divergence along the evolutionary pathway of eosinophil-associated ribonucleases.
Structure. 2023 Mar 2;31(3):329-342.e4. doi: 10.1016/j.str.2022.12.011. Epub 2023 Jan 16.
6
Insights into the importance of WPD-loop sequence for activity and structure in protein tyrosine phosphatases.
Chem Sci. 2022 Oct 26;13(45):13524-13540. doi: 10.1039/d2sc04135a. eCollection 2022 Nov 23.
7
Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase.
Chem Sci. 2022 Nov 2;13(45):13303-13320. doi: 10.1039/d2sc05031e. eCollection 2022 Nov 23.
8
Conserved conformational dynamics determine enzyme activity.
Sci Adv. 2022 Aug 5;8(31):eabo5546. doi: 10.1126/sciadv.abo5546. Epub 2022 Aug 3.
9
Mechanism of nucleotide discrimination by the translesion synthesis polymerase Rev1.
Nat Commun. 2022 May 24;13(1):2876. doi: 10.1038/s41467-022-30577-0.
10
Enzyme dynamics: Looking beyond a single structure.
ChemCatChem. 2020 Oct 6;12(19):4704-4720. doi: 10.1002/cctc.202000665. Epub 2020 Jun 26.

本文引用的文献

1
2
The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily.
Nucleic Acids Res. 2017 May 19;45(9):5013-5025. doi: 10.1093/nar/gkx230.
4
Networks of Dynamic Allostery Regulate Enzyme Function.
Structure. 2017 Feb 7;25(2):276-286. doi: 10.1016/j.str.2016.12.003. Epub 2017 Jan 12.
5
Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4735-40. doi: 10.1073/pnas.1523573113. Epub 2016 Apr 11.
6
Three decades of research on angiogenin: a review and perspective.
Acta Biochim Biophys Sin (Shanghai). 2016 May;48(5):399-410. doi: 10.1093/abbs/gmv131. Epub 2015 Dec 23.
7
The Pfam protein families database: towards a more sustainable future.
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85. doi: 10.1093/nar/gkv1344. Epub 2015 Dec 15.
8
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. doi: 10.1021/ct400314y. Epub 2013 Aug 20.
9
Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant.
J Biol Chem. 2015 Apr 3;290(14):8863-75. doi: 10.1074/jbc.M114.626648. Epub 2015 Feb 20.
10
The energy landscape of adenylate kinase during catalysis.
Nat Struct Mol Biol. 2015 Feb;22(2):124-31. doi: 10.1038/nsmb.2941. Epub 2015 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验