INRS - Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
Structure. 2018 Mar 6;26(3):426-436.e3. doi: 10.1016/j.str.2018.01.015. Epub 2018 Feb 22.
Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 10 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily.
酶超家族成员具有共同的化学和/或生物学功能,也具有共同的特征。虽然结构的作用已经得到很好的描述,但酶功能与动力学之间的联系还不太清楚。我们对具有共同结构折叠的 20 多个胰腺型核糖核酸酶超家族成员的固有动力学进行了系统的描述。这项研究的动机是核糖核酸酶同源物的化学活性和分子运动范围跨越了 10 倍以上。动力学特性是通过核磁共振实验和计算机模拟相结合来描述的。系统发生聚类将序列分为功能不同的亚家族。对不同核糖核酸酶的详细特征分析表明,亚家族内的酶具有保守的动力学特征。这些结果表明,除其他因素外,选择性压力可能与酶超家族中不同的化学和生物学功能有关,以保持动力学行为。