MacKinnon David P, Lockwood Chondra M, Hoffman Jeanne M, West Stephen G, Sheets Virgil
Department of Psychology, Arizona State University, Tempe 85287-1104, USA.
Psychol Methods. 2002 Mar;7(1):83-104. doi: 10.1037/1082-989x.7.1.83.
A Monte Carlo study compared 14 methods to test the statistical significance of the intervening variable effect. An intervening variable (mediator) transmits the effect of an independent variable to a dependent variable. The commonly used R. M. Baron and D. A. Kenny (1986) approach has low statistical power. Two methods based on the distribution of the product and 2 difference-in-coefficients methods have the most accurate Type I error rates and greatest statistical power except in 1 important case in which Type I error rates are too high. The best balance of Type I error and statistical power across all cases is the test of the joint significance of the two effects comprising the intervening variable effect.
一项蒙特卡洛研究比较了14种方法,以检验中介变量效应的统计显著性。中介变量将自变量的效应传递给因变量。常用的R.M.巴伦和D.A.肯尼(1986年)方法的统计功效较低。除了在一种重要情况下I型错误率过高外,基于乘积分布的两种方法和两种系数差异方法具有最准确的I型错误率和最大的统计功效。在所有情况下,I型错误和统计功效的最佳平衡是对构成中介变量效应的两种效应的联合显著性检验。