Zhang Zhiyong
University of Notre Dame, Notre Dame, USA,
Behav Res Methods. 2014 Dec;46(4):1184-98. doi: 10.3758/s13428-013-0424-0.
The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.
现有关于中介模型统计功效分析的文献通常假定数据呈正态分布,且基于功效较低的索贝尔检验而非功效更强的自助法检验。本研究建议通过蒙特卡洛模拟,依据自助法估计检测中介效应的统计功效。所提方法允许存在具有过度偏度和峰度的非正态数据。开发了一个名为bmem的免费R包来进行本研究中讨论的功效分析。提供了四个例子,包括一个简单中介模型、一个具有潜在中介变量的多重中介模型、一个多组中介模型和一个纵向中介模型,以说明所提方法。
Behav Res Methods. 2014-12
Behav Res Methods. 2024-9
Multivariate Behav Res. 2019-6-10
Multivariate Behav Res. 2017-10-2
Br J Math Stat Psychol. 2018-2
Behav Res Methods. 2012-9
Multivariate Behav Res. 2015
Biom J. 2016-5
Behav Res Methods. 2024-3
Alzheimers Res Ther. 2024-8-10
Appl Psychophysiol Biofeedback. 2024-9
Am J Cardiol. 2024-5-1
Behav Res Methods. 2024-9