Suppr超能文献

Identification of a myeloid intrathymic pathway of dendritic cell development marked by expression of the granulocyte macrophage-colony-stimulating factor receptor.

作者信息

de Yébenes Virginia G, Carrasco Yolanda R, Ramiro Almudena R, Toribio María L

机构信息

Centro de Biología Molecular "Severo Ochoa," CSIC, Facultad de Biología, Universidad Autónoma de Madrid, Spain.

出版信息

Blood. 2002 Apr 15;99(8):2948-56. doi: 10.1182/blood.v99.8.2948.

Abstract

In this study, the finding that a significant proportion of all dendritic cells (DCs) resident in vivo in the human postnatal thymus displayed a myeloid-related phenotype prompted us to re-examine the developmental origin of thymic DCs, a cell type hitherto considered to represent a homogeneous lymphoid-derived population. We show here that these novel intrathymic DCs are truly myeloid, as they arise from CD34(+) early thymic progenitors through CD34(lo) intermediates which have lost the capacity to generate T cells, but display myelomonocytic differentiation potential. We also demonstrate that phenotypically and functionally equivalent myeloid precursors devoid of T-cell potential do exist in vivo in the postnatal thymus. Moreover, although interleukin 7 (IL-7) supports the generation of such myeloid intermediates, we show that their developmental branching from the main intrathymic T-cell pathway is linked to the up-regulation of the myelomonocytic granulocyte macrophage-colony-stimulating factor (GM-CSF) receptor, to the down-regulation of the IL-7 receptor and to the lack of pre-T-cell receptor alpha (pTalpha) gene transcriptional activation. Taken together, these data challenge the current view that the thymus is colonized by a lymphoid-restricted progenitor and provide evidence that a more immature precursor population with lymphoid and myelomonocytic potential is actually seeding the human postnatal thymus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验