Gutiérrez Ana M, Reboredo Guillermo R, Catalá Angel
Cátedra de Fisiología Animal, Facultad de Cs. Naturales y Museo, La Plata, Argentina.
Int J Biochem Cell Biol. 2002 Jun;34(6):605-12. doi: 10.1016/s1357-2725(02)00007-9.
Studies were done to analyze the fatty acid composition and sensitivity to lipid peroxidation (LP) of mitochondria and microsomes from duck liver, heart and brain. The fatty acid composition of mitochondria and microsomes was tissue-dependent. In particular, arachidonic acid comprised 17.39+/-2.32, 11.75+/-3.25 and 9.70+/-0.40% of the total fatty acids in heart, liver and brain mitochondria respectively but only 13.39+/-1.31, 8.22+/-2.43 and 6.44+/-0.22% of the total fatty acids in heart, liver and brain microsomes, respectively. Docosahexahenoic acid comprised 17.02+/-0.78, 4.47+/-1.02 and 0.89+/-0.07% of the total fatty acids in brain, liver and heart mitochondria respectively but only 7.76+/-0.53, 3.27+/-0.73 and 1.97+/-0.38% of the total fatty acids in brain, liver and heart microsomes. Incubation of organelles with ascorbate-Fe(2+) at 37 degrees C caused a stimulation of LP as indicated by the increase in light emission: chemiluminescence (CL) and the decrease of arachidonic acid to: 5.17+/-1.34, 8.86+/-0.71 and 5.86+/-0.68% of the total fatty acids in heart, liver and brain mitochondria, respectively, and to 4.10+/-0.61 in liver microsomes. After LP docosahexahenoic acid decrease to 7.29+/-1.47, 1.36+/-0.18 and 0.30+/-0.11% of the total fatty acids in brain, liver and heart mitochondria. Statistically significant differences in the percent of both peroxidable fatty acids (arachidonic and docosahexaenoic acid) were not observed in heart and brain microsomes and this was coincident with absence of stimulation of LP. The results indicate a close relationship between tissue sensitivity to LP in vitro and long chain polyunsaturated fatty acid concentration. Nevertheless, any oxidative stress in vitro caused by ascorbate-Fe(2+) at 37 degrees C seems to avoid degradation of arachidonic and docosahexaenoic acids in duck liver and brain microsomes. It is possible that because of the important physiological functions of arachidonic and docosahexaenoic acids in these tissues, they are protected to maintain membrane content during oxidative stress.
开展了多项研究,以分析鸭肝脏、心脏和大脑中线粒体和微粒体的脂肪酸组成以及对脂质过氧化(LP)的敏感性。线粒体和微粒体的脂肪酸组成具有组织依赖性。具体而言,花生四烯酸分别占心脏、肝脏和大脑线粒体总脂肪酸的17.39±2.32%、11.75±3.25%和9.70±0.40%,但在心脏、肝脏和大脑微粒体中分别仅占总脂肪酸的13.39±1.31%、8.22±2.43%和6.44±0.22%。二十二碳六烯酸分别占大脑、肝脏和心脏线粒体总脂肪酸的17.02±0.78%、4.47±1.02%和0.89±0.07%,但在大脑、肝脏和心脏微粒体中分别仅占总脂肪酸的7.76±0.53%、3.27±0.73%和1.97±0.38%。在37℃下用抗坏血酸 - 铁(II)孵育细胞器会刺激LP,这表现为发光增加:化学发光(CL)以及花生四烯酸减少至:分别占心脏、肝脏和大脑线粒体总脂肪酸的5.17±1.34%、8.86±0.71%和5.86±0.68%,在肝脏微粒体中为4.10±0.61%。LP后,二十二碳六烯酸分别降至大脑、肝脏和心脏线粒体总脂肪酸的约7.29±1.47%、1.36±0.18%和0.30±0.11%。在心脏和大脑微粒体中未观察到两种可过氧化脂肪酸(花生四烯酸和二十二碳六烯酸)百分比的统计学显著差异,这与未刺激LP一致。结果表明体外组织对LP的敏感性与长链多不饱和脂肪酸浓度之间存在密切关系。然而,37℃下抗坏血酸 - 铁(II)引起的任何体外氧化应激似乎都避免了鸭肝脏和大脑微粒体中花生四烯酸和二十二碳六烯酸的降解。由于花生四烯酸和二十二碳六烯酸在这些组织中具有重要的生理功能,它们在氧化应激期间可能受到保护以维持膜含量。