Maurer-Stroh Sebastian, Eisenhaber Birgit, Eisenhaber Frank
Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, Vienna, A-1030, Austria.
J Mol Biol. 2002 Apr 5;317(4):523-40. doi: 10.1006/jmbi.2002.5425.
N-terminal N-myristoylation is a lipid anchor modification of eukaryotic and viral proteins targeting them to membrane locations, thus changing the cellular function of modified proteins. Protein myristoylation is critical in many pathways; e.g. in signal transduction, apoptosis, or alternative extracellular protein export. The myristoyl-CoA:protein N-myristoyltransferase (NMT) recognizes the sequence motif of appropriate substrate proteins at the N terminus and attaches the lipid moiety to the absolutely required N-terminal glycine residue. Reliable recognition of capacity for N-terminal myristoylation from the substrate protein sequence alone is desirable for proteome-wide function annotation projects but the existing PROSITE motif is not practical, since it produces huge numbers of false positive and even some false negative predictions. As a first step towards a new prediction method, it is necessary to refine the sequence motif coding for N-terminal N-myristoylation. Relying on the in-depth study of the amino acid sequence variability of substrate proteins, on binding site analyses in X-ray structures or 3D homology models for NMTs from various taxa, and on consideration of biochemical data extracted from the scientific literature, we found indications that, at least within a complete substrate protein, the N-terminal 17 protein residues experience different types of variability restrictions. We identified three motif regions: region 1 (positions 1-6) fitting the binding pocket; region 2 (positions 7-10) interacting with the NMT's surface at the mouth of the catalytic cavity; and region 3 (positions 11-17) comprising a hydrophilic linker. Each region was characterized by physical requirements to single sequence positions or groups of positions regarding volume, polarity, backbone flexibility and other typical properties of amino acids (http://mendel.imp.univie.ac.at/myristate/). These specificity differences are confined partly to taxonomic ranges and are proposed for the design of NMT inhibitors in pathogenic fungal and protozoan systems including Aspergillus fumigatus, Leishmania major, Trypanosoma cruzi, Trypanosoma brucei, Giardia intestinalis, Entamoeba histolytica, Pneumocystis carinii, Strongyloides stercoralis and Schistosoma mansoni. An exhaustive search for NMT-homologues led to the discovery of two putative entomopoxviral NMTs.
N 端 N-肉豆蔻酰化是真核生物和病毒蛋白的一种脂质锚定修饰,可将它们靶向到膜位置,从而改变修饰蛋白的细胞功能。蛋白肉豆蔻酰化在许多信号通路中至关重要,例如在信号转导、细胞凋亡或替代性细胞外蛋白输出过程中。肉豆蔻酰辅酶 A:蛋白 N-肉豆蔻酰转移酶(NMT)识别底物蛋白 N 端的序列基序,并将脂质部分连接到绝对必需的 N 端甘氨酸残基上。仅从底物蛋白序列可靠地识别 N 端肉豆蔻酰化能力,对于全蛋白质组功能注释项目是很有必要的,但现有的 PROSITE 基序并不实用,因为它会产生大量假阳性甚至一些假阴性预测。作为迈向新预测方法的第一步,有必要完善编码 N 端 N-肉豆蔻酰化的序列基序。基于对底物蛋白氨基酸序列变异性的深入研究、对来自不同分类群的 NMT 的 X 射线结构或 3D 同源模型中的结合位点分析,以及对从科学文献中提取的生化数据的考量,我们发现有迹象表明,至少在完整的底物蛋白中,N 端的 17 个蛋白质残基经历了不同类型的变异性限制。我们确定了三个基序区域:区域 1(第 1 - 6 位)适合结合口袋;区域 2(第 7 - 10 位)在催化腔口与 NMT 的表面相互作用;区域 3(第 11 - 17 位)包含一个亲水性连接子。每个区域都以对单个序列位置或位置组在体积、极性、主链灵活性和氨基酸的其他典型特性方面的物理要求为特征(http://mendel.imp.univie.ac.at/myristate/)。这些特异性差异部分局限于分类范围,并被提议用于设计针对包括烟曲霉、硕大利什曼原虫、克氏锥虫、布氏锥虫、肠贾第虫、溶组织内阿米巴、卡氏肺孢子虫、粪类圆线虫和曼氏血吸虫在内的致病真菌和原生动物系统中的 NMT 抑制剂。对 NMT 同源物的详尽搜索导致发现了两种推定的昆虫痘病毒 NMT。