Luchnikov V A, Medvedev N N, Oger L, Troadec J P
Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):7205-12. doi: 10.1103/physreve.59.7205.
The Voronoi network is known to be a useful tool for the structural description of voids in the packings of spheres produced by computer simulations. In this article we extend the Voronoi-Delaunay analysis to packings of nonspherical convex objects. Main properties of the Voronoi network, which are known for systems of spheres, are valid for systems of any convex objects. A general numerical algorithm for calculation of the Voronoi network in three dimensions is proposed. It is based on the calculation of the trajectory of the imaginary empty sphere of variable size, moving inside a system (the Delaunay empty sphere method). Analysis of voids is presented for an ensemble of random straight lines and for a molecular dynamics model of liquid crystal. The spatial distribution of voids and a simple percolation analysis are obtained. The distributions of the bottleneck radii and the radii of spheres inscribed in the voids are calculated.
已知Voronoi网络是用于通过计算机模拟生成的球体堆积中孔隙结构描述的有用工具。在本文中,我们将Voronoi-Delaunay分析扩展到非球形凸体的堆积。对于球体系统已知的Voronoi网络的主要性质,对于任何凸体系统都是有效的。提出了一种用于计算三维Voronoi网络的通用数值算法。它基于对在系统内部移动的可变大小的虚拟空球轨迹的计算(Delaunay空球方法)。给出了对一组随机直线和液晶分子动力学模型的孔隙分析。得到了孔隙的空间分布和简单的渗流分析。计算了瓶颈半径和孔隙内内切球半径的分布。