Suppr超能文献

非球形硬颗粒密集堆积的组织原则:并非所有形状都是平等的。

Organizing principles for dense packings of nonspherical hard particles: not all shapes are created equal.

作者信息

Torquato Salvatore, Jiao Yang

机构信息

Department of Chemistry, Princeton Center for Theoretical Science, Program of Applied and Computational Mathematics, Princeton Institute of the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011102. doi: 10.1103/PhysRevE.86.011102. Epub 2012 Jul 5.

Abstract

We have recently devised organizing principles to obtain maximally dense packings of the Platonic and Archimedean solids and certain smoothly shaped convex nonspherical particles [Torquato and Jiao, Phys. Rev. E 81, 041310 (2010)]. Here we generalize them in order to guide one to ascertain the densest packings of other convex nonspherical particles as well as concave shapes. Our generalized organizing principles are explicitly stated as four distinct propositions. All of our organizing principles are applied to and tested against the most comprehensive set of both convex and concave particle shapes examined to date, including Catalan solids, prisms, antiprisms, cylinders, dimers of spheres, and various concave polyhedra. We demonstrate that all of the densest known packings associated with this wide spectrum of nonspherical particles are consistent with our propositions. Among other applications, our general organizing principles enable us to construct analytically the densest known packings of certain convex nonspherical particles, including spherocylinders, "lens-shaped" particles, square pyramids, and rhombic pyramids. Moreover, we show how to apply these principles to infer the high-density equilibrium crystalline phases of hard convex and concave particles. We also discuss the unique packing attributes of maximally random jammed packings of nonspherical particles.

摘要

我们最近设计了一些组织原则,以获得柏拉图体和阿基米德体以及某些形状光滑的凸非球形颗粒的最大密度堆积[托尔夸托和焦,《物理评论E》81,041310(2010)]。在此,我们对这些原则进行推广,以便引导人们确定其他凸非球形颗粒以及凹形颗粒的最密堆积。我们的广义组织原则被明确表述为四个不同的命题。我们所有的组织原则都应用于迄今为止所研究的最全面的凸形和凹形颗粒形状集合,并针对该集合进行了测试,这些形状包括卡塔兰体、棱柱体、反棱柱体、圆柱体、球体二聚体以及各种凹多面体。我们证明,与这一广泛的非球形颗粒谱相关的所有已知最密堆积都与我们的命题一致。在其他应用中,我们的一般组织原则使我们能够通过解析构建某些凸非球形颗粒的已知最密堆积,包括球圆柱体、“透镜形”颗粒、方锥体和菱形锥体。此外,我们展示了如何应用这些原则来推断硬凸颗粒和凹颗粒的高密度平衡晶相。我们还讨论了非球形颗粒的最大随机堵塞堆积的独特堆积属性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验