Skryabin D V, Firth W J
Department of Physics and Applied Physics, John Anderson Building, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, Scotland.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):1019-29. doi: 10.1103/physreve.60.1019.
We present a detailed analysis of the modulational instability (MI) of ground-state bright solitary solutions of two incoherently coupled nonlinear Schrödinger equations. Varying the relative strength of cross-phase and self-phase effects we show the existence and origin of four branches of MI of the two-wave solitary solutions. We give a physical interpretation of our results in terms of the group-velocity-dispersion- (GVD-) induced polarization dynamics of spatial solitary waves. In particular, we show that in media with normal GVD spatial symmetry breaking changes to polarization symmetry breaking when the relative strength of the cross-phase modulation exceeds a certain threshold value. The analytical and numerical stability analyses are fully supported by an extensive series of numerical simulations of the full model.
我们对两个非相干耦合非线性薛定谔方程基态亮孤子解的调制不稳定性(MI)进行了详细分析。通过改变交叉相位和自相位效应的相对强度,我们展示了两波孤子解的MI的四个分支的存在及其起源。我们根据空间孤波的群速度色散(GVD)诱导的极化动力学对结果进行了物理解释。特别是,我们表明,在具有正常GVD的介质中,当交叉相位调制的相对强度超过某个阈值时,空间对称性破缺会转变为极化对称性破缺。完整模型的一系列广泛数值模拟充分支持了分析和数值稳定性分析。