Suppr超能文献

非线性波的可积性与线性稳定性

Integrability and Linear Stability of Nonlinear Waves.

作者信息

Degasperis Antonio, Lombardo Sara, Sommacal Matteo

机构信息

1Dipartimento di Fisica, "Sapienza" Università di Roma, Rome, Italy.

2Department of Mathematical Sciences, School of Science, Loughborough University, Loughborough, UK.

出版信息

J Nonlinear Sci. 2018;28(4):1251-1291. doi: 10.1007/s00332-018-9450-5. Epub 2018 Mar 15.

Abstract

It is well known that the linear stability of solutions of partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.

摘要

众所周知,借助谱方法可以非常有效地研究可积偏微分方程解的线性稳定性。我们在此给出线性化方程本征模的一种直接构造方法,该方法仅利用相关的拉克斯对,而不涉及谱数据和边界条件。这种局部构造以一般矩阵形式给出,以便适用于一大类可积方程,包括多分量非线性薛定谔系统和多波共振相互作用系统。作为一个例子,针对散焦、聚焦和混合区域中两个耦合非线性薛定谔方程的特定系统,详细阐述了这种一般方法所涉及的解析和数值计算。在连续波解的振幅和波数的整个参数空间中,对其不稳定性进行了充分讨论。通过在谱变量的复平面中定义和计算谱,明确地表达了本征频率。根据它们的拓扑性质,给出并以图形方式展示了这些谱在参数空间中的完整分类。对于耦合常数的一般选择,连续波解是线性不稳定的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba50/6018683/0f002d6b748e/332_2018_9450_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验