Suppr超能文献

弱可激发介质中的螺旋波动力学理论:向运动学模型的渐近简化及应用

Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications.

作者信息

Hakim V, Karma A

机构信息

Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt A):5073-105. doi: 10.1103/physreve.60.5073.

Abstract

In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken plane wave (wave tip) can either rotate (steadily or unsteadily) around a large excitable core, thereby producing a spiral pattern, or retract, causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave description is shown to naturally split between the tip region and a far region that are smoothly matched on an intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with the large scale motion of the spiral wave front slaved to the tip. This kinematic description provides both a physical picture and exact predictions for a wide range of wave behavior, including (i) steady rotation (frequency and core radius), (ii) exact treatment of the meandering instability in the free-boundary limit with the prediction that the frequency of unstable motion is half the primary steady frequency, (iii) drift under external actions (external field with application to axisymmetric scroll ring motion in three dimensions, and spatial- or/and time-dependent variation of excitability), and (iv) the dynamics of multiarmed spiral waves with the prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of FitzHugh-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semiquantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin interface limit of singly diffusive reaction-diffusion models.

摘要

在以大阈值刺激为特征的弱可兴奋介质中,孤立破碎平面波的自由端(波尖)可以围绕一个大的可兴奋核心稳定或不稳定地旋转,从而产生螺旋模式,或者缩回,导致波在边界处消失。从反应扩散模型的自由边界极限出发,在这种弱可兴奋大核心区域对螺旋运动和缩回进行了渐近分析,当激发区域由一个薄界面限定时该极限有效。结果表明,波的描述自然地在尖端区域和远场区域之间划分,这两个区域在中间尺度上平滑匹配。这种分离使我们能够严格推导出波尖的运动方程,螺旋波前的大尺度运动受波尖支配。这种运动学描述为广泛的波行为提供了物理图像和精确预测,包括:(i)稳定旋转(频率和核心半径);(ii)在自由边界极限下对蜿蜒不稳定性的精确处理,预测不稳定运动的频率是主要稳定频率的一半;(iii)外部作用下的漂移(外部场应用于三维轴对称涡旋环运动,以及兴奋性的空间或/和时间依赖性变化);(iv)多臂螺旋波的动力学,预测两臂或更多臂的稳定旋转波是线性不稳定的。使用FitzHugh-Nagumo动力学的数值模拟来检验我们结果的几个方面。此外,我们讨论了该理论对半无限核心的半定量扩展,并指出了与单扩散反应扩散模型的薄界面极限相关的数学微妙之处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验