Suppr超能文献

硬椭球体的流体:包含来自Percus-Yevick理论的向列型不稳定性的相图。

Fluids of hard ellipsoids: Phase diagram including a nematic instability from Percus-Yevick theory.

作者信息

Letz M, Latz A

机构信息

Johannes-Gutenberg Universität, 55099 Mainz, Germany.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt B):5865-71. doi: 10.1103/physreve.60.5865.

Abstract

An important aspect of molecular fluids is the relation between orientation and translation parts of the two-particle correlations. Especially, a detailed knowledge of the influence of orientation correlations is needed to explain and calculate in detail the occurrence of a nematic phase. The simplest model system that shows both orientation and translation correlations is a system of hard ellipsoids. We investigate an isotropic fluid formed of hard ellipsoids with the Percus-Yevick theory. Solving the Percus-Yevick equations self-consistently and accurately in the high density regime gives, contrary to previous works, a clear criterion for a nematic instability. We calculate in detail the equilibrium phase diagram for a fluid of hard ellipsoids of revolution. Our results compare well with Monte Carlo simulations and density-functional theory.

摘要

分子流体的一个重要方面是两粒子关联中取向部分和平动部分之间的关系。特别是,需要详细了解取向关联的影响,以便详细解释和计算向列相的出现。显示出取向和平动关联的最简单模型系统是硬椭球体系统。我们用珀西-耶维克理论研究了由硬椭球体构成的各向同性流体。与之前的工作相反,在高密度区域自洽且精确地求解珀西-耶维克方程给出了向列不稳定性的明确判据。我们详细计算了旋转硬椭球体流体的平衡相图。我们的结果与蒙特卡罗模拟和密度泛函理论的结果吻合得很好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验