Dräger J, Klafter J
School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt A):6503-6. doi: 10.1103/physreve.60.6503.
Using a scaling approach we investigate the first passage time < mu(1,N)(r)> for the first out of N identical independently diffusing particles in ordered and disordered structures. For Euclidean spaces we obtain < mu(1,N)(r)> in terms of a series in (ln N)(-1), independent of dimension. In the case of disordered ramified fractals < mu(1,N)(r)> is expressed in terms of a series in (ln N)((1-d(l)(w))), where d(l)(w) describes how the mean topological distance <l(t)> evolves with time t. We propose a scaling behavior for the related quantity S(N)(t), the number of distinct sites visited by N particles. We verify our predictions by numerical simulations.
我们采用标度方法研究了在有序和无序结构中,(N)个相同的独立扩散粒子中第一个粒子的首次通过时间(\langle\mu_{(1,N)}(r)\rangle)。对于欧几里得空间,我们得到了(\langle\mu_{(1,N)}(r)\rangle)关于((\ln N)^{-1})的级数形式,且与维度无关。在无序分支分形的情况下,(\langle\mu_{(1,N)}(r)\rangle)用((\ln N)^{(1 - d_{(l)}(w))})的级数形式表示,其中(d_{(l)}(w))描述了平均拓扑距离(\langle l(t)\rangle)如何随时间(t)演化。我们提出了相关量(S_{(N)}(t))(即(N)个粒子访问的不同位点的数量)的标度行为。我们通过数值模拟验证了我们的预测。