Russwurm Michael, Mergia Evanthia, Mullershausen Florian, Koesling Doris
Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Germany.
J Biol Chem. 2002 Jul 12;277(28):24883-8. doi: 10.1074/jbc.M110570200. Epub 2002 Apr 26.
Many of the physiological effects of the signaling molecule nitric oxide are mediated by the stimulation of the NO-sensitive guanylyl cyclase. Activation of the enzyme is achieved by binding of NO to the prosthetic heme group of the enzyme and the initiation of conformational changes. So far, the rate of NO dissociation of the purified enzyme has only been determined spectrophotometrically, whereas the respective deactivation, i.e. the decline in enzymatic activity, has only been determined in cytosolic fractions and intact cells. Here, we report on the deactivation of purified NO-sensitive guanylyl cyclase determined after addition of the NO scavenger oxyhemoglobin or dilution. The deactivation rate corresponded to a half-life of the NO/guanylyl cyclase complex of approximately 4 s, which is in good agreement with the spectrophotometrically measured NO dissociation rate of the enzyme. The deactivation rate of the enzyme determined in platelets yielded a much shorter half-life indicating either partial damage of the enzyme during the purification procedure or the existence of endogenous deactivation accelerating factors. YC-1, a component causing sensitization of guanylyl cyclase toward NO, inhibited deactivation of guanylyl cyclase, resulting in an extremely prolonged half-life of the NO/guanylyl cyclase complex of more than 10 min. The deactivation of an ATP-utilizing guanylyl cyclase mutant was almost unaffected by YC-1, indicating the existence of a special structure within the catalytic domain required for YC-1 binding or for the transduction of the YC-1 effect. In contrast to the wild type enzyme, YC-1 did not increase NO sensitivity of this mutant, clearly establishing inhibition of deactivation as the underlying mechanism of the NO sensitizer YC-1.
信号分子一氧化氮的许多生理效应是由对一氧化氮敏感的鸟苷酸环化酶的刺激介导的。该酶的激活是通过一氧化氮与酶的辅基血红素基团结合并引发构象变化来实现的。到目前为止,纯化酶的一氧化氮解离速率仅通过分光光度法测定,而各自的失活,即酶活性的下降,仅在胞质部分和完整细胞中测定。在这里,我们报告了在添加一氧化氮清除剂氧合血红蛋白或稀释后测定的纯化的对一氧化氮敏感的鸟苷酸环化酶的失活情况。失活速率对应于一氧化氮/鸟苷酸环化酶复合物的半衰期约为4秒,这与分光光度法测量的酶的一氧化氮解离速率非常一致。在血小板中测定的酶的失活速率产生了更短的半衰期,这表明在纯化过程中酶受到部分损伤或存在内源性失活加速因子。YC-1是一种使鸟苷酸环化酶对一氧化氮敏感的成分,它抑制鸟苷酸环化酶的失活,导致一氧化氮/鸟苷酸环化酶复合物的半衰期极长,超过10分钟。一种利用ATP的鸟苷酸环化酶突变体的失活几乎不受YC-1的影响,这表明在催化结构域内存在一种特殊结构,是YC-1结合或YC-1效应转导所必需的。与野生型酶相反,YC-1并没有增加这种突变体对一氧化氮的敏感性,这清楚地确定了失活抑制是一氧化氮敏化剂YC-1的潜在机制。