Suppr超能文献

使用人工神经网络和传统标准集生成慢性疲劳综合征的分类标准。

Generation of classification criteria for chronic fatigue syndrome using an artificial neural network and traditional criteria set.

作者信息

Linder R, Dinser R, Wagner M, Krueger G R F, Hoffmann A

机构信息

Institute of Medical Informatics, Medical University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.

出版信息

In Vivo. 2002 Jan-Feb;16(1):37-43.

Abstract

OBJECTIVE

The definition of chronic fatigue syndrome (CFS) is still disputed and no validated classification criteria have been published. Artificial neural networks (ANN) are computer-based models that can help to evaluate complex correlations. We examined the utility of ANN and other conventional methods in generating classification criteria for CFS compared to other diseases with prominent fatigue, systemic lupus erythematosus (SLE) and fibromyalgia syndrome (FMA).

PATIENTS AND METHODS

Ninety-nine case patients with CFS, 41 patients with SLE and 58 with FMA were recruited from a generalist outpatient population. Clinical symptoms were documented with help of a predefined questionnaire. The patients were randomly divided into two groups. One group (n = 158) served to derive classification criteria sets by two-fold cross-validation, using a) unweighted application of criteria, b) regression coefficients, c) regression tree analysis, and d) artificial neural networks in parallel. These criteria were validated with the second group (n = 40).

RESULTS

Classification criteria developed by ANN were found to have a sensitivity of 95% and a specificity of 85%. ANN achieved a higher accuracy than any of the other methods.

CONCLUSION

We present validated criteria for the classification of CFS versus SLE and FMA, comparing different classification approaches. The most accurate criteria were derived with the help of ANN. We therefore recommend the use of ANN for the classification of syndromes with complex interrelated symptoms like CFS.

摘要

目的

慢性疲劳综合征(CFS)的定义仍存在争议,且尚未发布经过验证的分类标准。人工神经网络(ANN)是基于计算机的模型,可有助于评估复杂的相关性。我们研究了与其他有明显疲劳症状的疾病(系统性红斑狼疮(SLE)和纤维肌痛综合征(FMA))相比,人工神经网络和其他传统方法在生成CFS分类标准方面的效用。

患者与方法

从普通门诊人群中招募了99例CFS患者、41例SLE患者和58例FMA患者。借助预先定义的问卷记录临床症状。将患者随机分为两组。一组(n = 158)通过双重交叉验证来推导分类标准集,并行使用a)标准的无加权应用、b)回归系数、c)回归树分析和d)人工神经网络。这些标准在第二组(n = 40)中进行验证。

结果

发现人工神经网络制定的分类标准灵敏度为95%,特异度为85%。人工神经网络的准确率高于其他任何方法。

结论

我们提出了针对CFS与SLE和FMA进行分类的经过验证的标准,比较了不同的分类方法。最准确的标准是借助人工神经网络得出的。因此,我们建议使用人工神经网络对像CFS这样具有复杂相互关联症状的综合征进行分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验