Mansilla Francisco, Friis Irene, Jadidi Mandana, Nielsen Karen M, Clark Brian F C, Knudsen Charlotte R
Institute of Molecular and Structural Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Arhus C, Denmark.
Biochem J. 2002 Aug 1;365(Pt 3):669-76. doi: 10.1042/BJ20011681.
In eukaryotes, the eukaryotic translation elongation factor eEF1A responsible for transporting amino-acylated tRNA to the ribosome forms a higher-order complex, eEF1H, with its guanine-nucleotide-exchange factor eEF1B. In metazoans, eEF1B consists of three subunits: eEF1B alpha, eEF1B eta and eEF1B gamma. The first two subunits possess the nucleotide-exchange activity, whereas the role of the last remains poorly defined. In mammals, two active tissue-specific isoforms of eEF1A have been identified. The reason for this pattern of differential expression is unknown. Several models on the basis of in vitro experiments have been proposed for the macromolecular organization of the eEF1H complex. However, these models differ in various aspects. This might be due to the difficulties of handling, particularly the eEF1B beta and eEF1B gamma subunits in vitro. Here, the human eEF1H complex is for the first time mapped using the yeast two-hybrid system, which is a powerful in vivo technique for analysing protein-protein interactions. The following complexes were observed: eEF1A1:eEF1B alpha, eEF1A1:eEF1B beta, eEF1B beta:eEF1B beta, eEF1B alpha:eEF1B gamma, eEF1B beta:eEF1B gamma and eEF1B alpha:eEF1B gamma:eEF1B beta, where the last was observed using a three-hybrid approach. Surprisingly, eEF1A2 showed no or only little affinity for the guanine-nucleotide-exchange factors. Truncated versions of the subunits of eEF1B were used to orientate these subunits within the resulting model. The model unit is a pentamer composed of two molecules of eEF1A, each interacting with either eEF1B alpha or eEF1B beta held together by eEF1B gamma. These units can dimerize via eEF1B beta. Our model is compared with other models, and structural as well as functional aspects of the model are discussed.
在真核生物中,负责将氨酰化tRNA转运至核糖体的真核生物翻译延伸因子eEF1A与其鸟嘌呤核苷酸交换因子eEF1B形成一种高阶复合物eEF1H。在多细胞动物中,eEF1B由三个亚基组成:eEF1Bα、eEF1Bη和eEF1Bγ。前两个亚基具有核苷酸交换活性,而最后一个亚基的作用仍不清楚。在哺乳动物中,已鉴定出两种具有活性的组织特异性eEF1A同工型。这种差异表达模式的原因尚不清楚。基于体外实验已提出了几种关于eEF1H复合物大分子组织的模型。然而,这些模型在各个方面存在差异。这可能是由于体外处理的困难,特别是eEF1Bβ和eEF1Bγ亚基。在此,首次使用酵母双杂交系统对人eEF1H复合物进行图谱绘制,酵母双杂交系统是一种用于分析蛋白质-蛋白质相互作用的强大体内技术。观察到以下复合物:eEF1A1:eEF1Bα、eEF1A1:eEF1Bβ、eEF1Bβ:eEF1Bβ、eEF1Bα:eEF1Bγ、eEF1Bβ:eEF1Bγ和eEF1Bα:eEF1Bγ:eEF1Bβ,其中最后一个是使用三杂交方法观察到的。令人惊讶的是,eEF1A2对鸟嘌呤核苷酸交换因子没有或只有很小的亲和力。使用eEF1B亚基的截短版本在所得模型中确定这些亚基的方向。模型单元是一个五聚体,由两个eEF1A分子组成,每个分子与由eEF1Bγ结合在一起的eEF1Bα或eEF1Bβ相互作用。这些单元可通过eEF1Bβ二聚化。将我们的模型与其他模型进行比较,并讨论了该模型的结构和功能方面。