Faisant N, Siepmann J, Benoit J P
INSERM ERIT-M 0104, College of Pharmacy, Université d'Angers, 16 Boulevard Daviers, 49100, France.
Eur J Pharm Sci. 2002 May;15(4):355-66. doi: 10.1016/s0928-0987(02)00023-4.
The two major aims of this study were: (i) to elucidate the underlying release mechanisms from drug-loaded, erodible microparticles based on poly(lactic-co-glycolic acid) (PLGA) showing biphasic drug release behavior: an initial 'burst' effect, followed by a zero order release phase; and (ii) to develop a new, simple mathematical model that allows the quantitative description of the observed in vitro drug release patterns from this type of delivery system. PLGA-based microparticles offer various advantages, such as the possibility to control the resulting drug release rate accurately over prolonged periods of time, easiness of administration (e.g., by stereotaxic injection), good biocompatibility and complete erosion (avoiding the removal of empty remnants). Consequently, the practical importance of these advanced drug delivery systems is remarkably increasing. However, only little knowledge is yet available concerning the processes controlling the release rate of the drug out of these devices. Various chemical and physical phenomena are involved, rendering the identification of the crucial mechanisms and the mathematical description of the resulting drug release kinetics difficult. In the present study, different physicochemical characterization methods (e.g., DSC, SEM, SEC, particle size analysis) were used to monitor the changes occurring within anticancer drug-loaded PLGA microparticles upon exposure to phosphate buffer pH 7.4. Based on these experimental findings, the most important underlying drug release rate controlling mechanisms were identified and a new mathematical model was developed that allows the quantitative description of the resulting release patterns.
(i)阐明基于聚乳酸-乙醇酸共聚物(PLGA)的载药可蚀性微粒的潜在释放机制,该微粒呈现双相药物释放行为:初始的“突释”效应,随后是零级释放阶段;(ii)建立一个新的、简单的数学模型,以定量描述从这类给药系统观察到的体外药物释放模式。基于PLGA的微粒具有多种优势,比如能够在较长时间内精确控制药物释放速率,给药简便(如通过立体定向注射),具有良好的生物相容性且能完全降解(避免残留空微粒)。因此,这些先进给药系统的实际重要性正在显著增加。然而,关于控制药物从这些装置中释放速率的过程,目前所知甚少。其中涉及多种化学和物理现象,使得确定关键机制以及对由此产生的药物释放动力学进行数学描述变得困难。在本研究中,使用了不同的物理化学表征方法(如差示扫描量热法、扫描电子显微镜、尺寸排阻色谱法、粒度分析)来监测载有抗癌药物的PLGA微粒在暴露于pH 7.4的磷酸盐缓冲液时发生的变化。基于这些实验结果,确定了最重要的潜在药物释放速率控制机制,并建立了一个新的数学模型,以定量描述由此产生的释放模式。