Duverney David, Gaspoz Jean-Michel, Pichot Vincent, Roche Frédéric, Brion Richard, Antoniadis Anestis, Barthélémy Jean-Claude
Service d'Exploration Fonctionnelle CardioRespiratoire, Laboratoire de Physiologie, Hopital Universitaire Nord, Saint-Etienne, France.
Pacing Clin Electrophysiol. 2002 Apr;25(4 Pt 1):457-62. doi: 10.1046/j.1460-9592.2002.00457.x.
Permanent and paroxysmal AF is a risk factor for the occurrence and the recurrence of stroke, which can occur as its first manifestation. However, its automatic identification is still unsatisfactory. In this study, a new mathematical approach was evaluated to automate AF identification. A derivation set of 30 24-hour Holter recordings, 15 with chronic AF (CAF) and 15 with sinus rhythm (SR), allowed the authors to establish specific RR variability characteristics using wavelet and fractal analysis. Then, a validation set of 50 subjects was studied using these criteria, 19 with CAF, 16 with SR, and 15 with paroxysmal AF (PAF); and each QRS was classified as true or false sinus or AF beat. In the SR group, specificity reached 99.9%; in the CAF group, sensitivity reached 99.2%; in the PAF group, sensitivity reached 96.1%, and specificity 92.6%. However, classification on a patient basis provided a sensitivity of 100%. This new approach showed a high sensitivity and a high specificity for automatic AF detection, and could be used in screening for AF in large populations at risk.
持续性房颤和阵发性房颤是卒中发生及复发的危险因素,卒中可能作为其首发表现出现。然而,房颤的自动识别仍不尽人意。在本研究中,对一种新的数学方法进行了评估,以实现房颤识别的自动化。一组由30份24小时动态心电图记录组成的推导集,其中15份为慢性房颤(CAF)记录,15份为窦性心律(SR)记录,使作者能够利用小波分析和分形分析确定特定的RR间期变异性特征。然后,使用这些标准对一组50名受试者进行研究,其中19名患有CAF,16名患有SR,15名患有阵发性房颤(PAF);每个QRS波被分类为窦性或房颤搏动的真或假。在SR组中,特异性达到99.9%;在CAF组中,敏感性达到99.2%;在PAF组中,敏感性达到96.1%,特异性达到92.6%。然而,基于患者的分类提供了100%的敏感性。这种新方法对房颤自动检测具有高敏感性和高特异性,可用于对大量高危人群进行房颤筛查。