Suppr超能文献

用于动态心电图监测的心房颤动自动检测的高精度。

High accuracy in automatic detection of atrial fibrillation for Holter monitoring.

机构信息

Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou 310058, China.

出版信息

J Zhejiang Univ Sci B. 2012 Sep;13(9):751-6. doi: 10.1631/jzus.B1200107.

Abstract

Atrial fibrillation (AF) has been considered as a growing epidemiological problem in the world, with a substantial impact on morbidity and mortality. Ambulatory electrocardiography (e.g., Holter) monitoring is commonly used for AF diagnosis and therapy and the automated detection of AF is of great significance due to the vast amount of information provided. This study presents a combined method to achieve high accuracy in AF detection. Firstly, we detected the suspected transitions between AF and sinus rhythm using the delta RR interval distribution difference curve, which were then classified by a combination analysis of P wave and RR interval. The MIT-BIH AF database was used for algorithm validation and a high sensitivity and a high specificity (98.2% and 97.5%, respectively) were achieved. Further, we developed a dataset of 24-h paroxysmal AF Holter recordings (n=45) to evaluate the performance in clinical practice, which yielded satisfactory accuracy (sensitivity=96.3%, specificity=96.8%).

摘要

心房颤动(AF)已被认为是世界上一个日益严重的流行病学问题,对发病率和死亡率有重大影响。动态心电图(如 Holter)监测常用于 AF 的诊断和治疗,自动检测 AF 具有重要意义,因为它提供了大量信息。本研究提出了一种联合方法,以实现 AF 检测的高精度。首先,我们使用 delta RR 间隔分布差异曲线检测 AF 和窦性节律之间疑似的转变,然后通过 P 波和 RR 间隔的组合分析对其进行分类。使用 MIT-BIH AF 数据库对算法进行验证,实现了高灵敏度和高特异性(分别为 98.2%和 97.5%)。此外,我们开发了一个 24 小时阵发性 AF Holter 记录数据集(n=45),以评估其在临床实践中的性能,结果具有令人满意的准确性(灵敏度=96.3%,特异性=96.8%)。

相似文献

3
Time-varying coherence function for atrial fibrillation detection.时变相干函数在心房颤动检测中的应用。
IEEE Trans Biomed Eng. 2013 Oct;60(10):2783-93. doi: 10.1109/TBME.2013.2264721. Epub 2013 May 22.
5
Improvements in atrial fibrillation detection for real-time monitoring.用于实时监测的心房颤动检测的改进。
J Electrocardiol. 2009 Nov-Dec;42(6):522-6. doi: 10.1016/j.jelectrocard.2009.06.006. Epub 2009 Jul 15.
8
Automatic real time detection of atrial fibrillation.心房颤动的自动实时检测。
Ann Biomed Eng. 2009 Sep;37(9):1701-9. doi: 10.1007/s10439-009-9740-z. Epub 2009 Jun 17.

引用本文的文献

5
ECG Language processing (ELP): A new technique to analyze ECG signals.心电图语言处理(ELP):一种分析心电图信号的新技术。
Comput Methods Programs Biomed. 2021 Apr;202:105959. doi: 10.1016/j.cmpb.2021.105959. Epub 2021 Feb 9.
10
Screening for Atrial Fibrillation During Automatic Blood Pressure Measurements.自动血压测量期间的心房颤动筛查
IEEE J Transl Eng Health Med. 2018 Oct 9;6:4400307. doi: 10.1109/JTEHM.2018.2869609. eCollection 2018.

本文引用的文献

2
Improvements in atrial fibrillation detection for real-time monitoring.用于实时监测的心房颤动检测的改进。
J Electrocardiol. 2009 Nov-Dec;42(6):522-6. doi: 10.1016/j.jelectrocard.2009.06.006. Epub 2009 Jul 15.
3
Automatic real time detection of atrial fibrillation.心房颤动的自动实时检测。
Ann Biomed Eng. 2009 Sep;37(9):1701-9. doi: 10.1007/s10439-009-9740-z. Epub 2009 Jun 17.
6
The impact of asymptomatic atrial fibrillation.无症状性心房颤动的影响
J Am Coll Cardiol. 2004 Jan 7;43(1):53-4. doi: 10.1016/j.jacc.2003.10.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验