Suppr超能文献

动脉脉搏波反射作为反馈。

Arterial pulse wave reflection as feedback.

作者信息

Quick Christopher M, Berger David S, Noordergraaf Abraham

机构信息

Center for Cerebrovascular Research, University of California, San Francisco 94110, USA.

出版信息

IEEE Trans Biomed Eng. 2002 May;49(5):440-5. doi: 10.1109/10.995682.

Abstract

Traditionally, input impedance (Z(in)) has been used to characterize the global dynamic properties of an arterial system independent of properties of the heart. Defined as the relationship of pressure and flow at the entrance of an arterial system, it describes the ability of an arterial system to dynamically impede blood flow. Recently, a new description has been developed that also characterizes the arterial system independent of properties of the heart. Apparent arterial compliance (C(app)) is defined as the dynamic relationship of input pressure and volume stored in an arterial system, and describes the ability of the arterial system to dynamically store blood. Both Z(in) and C(app) are influenced by pulse wave propagation and reflection. However, the functional form of Capp lends itself to describing the arterial system in terms of negative feedback. Pulse wave reflection decreases the pulsatile volume stored (gain) at low frequencies, but increases the range of frequencies (bandwidth) in which the pulsatile volume is determined by total arterial compliance. This paper illustrates, by simple analytical formula, large-scale arterial system modeling, and direct analysis of data, how this conceptualization of reflection offers a new means to interpret changes in arterial system dynamics resulting from changes in arterial compliance.

摘要

传统上,输入阻抗(Z(in))已被用于表征独立于心脏特性的动脉系统的整体动态特性。它被定义为动脉系统入口处压力与流量的关系,描述了动脉系统动态阻碍血流的能力。最近,一种新的描述方法也已被开发出来,它同样可以独立于心脏特性来表征动脉系统。表观动脉顺应性(C(app))被定义为输入压力与动脉系统中储存的容积之间的动态关系,并描述了动脉系统动态储存血液的能力。Z(in)和C(app)都受脉搏波传播和反射的影响。然而,Capp的函数形式有助于用负反馈来描述动脉系统。脉搏波反射在低频时会减少储存的脉动容积(增益),但会增加脉动容积由总动脉顺应性决定的频率范围(带宽)。本文通过简单的解析公式、大规模动脉系统建模以及对数据的直接分析,阐述了这种反射概念如何提供一种新方法来解释由于动脉顺应性变化而导致的动脉系统动力学变化。

相似文献

1
Arterial pulse wave reflection as feedback.
IEEE Trans Biomed Eng. 2002 May;49(5):440-5. doi: 10.1109/10.995682.
2
Resolving the hemodynamic inverse problem.
IEEE Trans Biomed Eng. 2006 Mar;53(3):361-8. doi: 10.1109/TBME.2005.869664.
3
Towards new indices of arterial stiffness using systolic pulse contour analysis: a theoretical point of view.
J Cardiovasc Pharmacol. 2008 Feb;51(2):111-7. doi: 10.1097/FJC.0b013e318163a977.
4
The arterial system pressure-volume loop.
Physiol Meas. 2005 Dec;26(6):N29-35. doi: 10.1088/0967-3334/26/6/N01. Epub 2005 Nov 9.
5
Models of the arterial tree.
Stud Health Technol Inform. 2000;71:65-77.
6
Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms.
Am J Hypertens. 2005 Jan;18(1 Pt 2):3S-10S. doi: 10.1016/j.amjhyper.2004.10.009.
7
Coupling arterial windkessel with peripheral vasomotion: modeling the effects on low-frequency oscillations.
IEEE Trans Biomed Eng. 2006 Jan;53(1):53-64. doi: 10.1109/TBME.2005.859787.
8
Wave propagation in a model of the arterial circulation.
J Biomech. 2004 Apr;37(4):457-70. doi: 10.1016/j.jbiomech.2003.09.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验