Suppr超能文献

酒精诱导大肠杆菌稳定期培养物中活力丧失的延迟

Alcohol-induced delay of viability loss in stationary-phase cultures of Escherichia coli.

作者信息

Vulić Marin, Kolter Roberto

机构信息

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Bacteriol. 2002 Jun;184(11):2898-905. doi: 10.1128/JB.184.11.2898-2905.2002.

Abstract

During prolonged incubation in stationary phase Escherichia coli undergoes starvation-induced differentiation, resulting in highly resistant cells. In rich medium with high amino acid content further incubation of cultures at high cell density leads to the generation of a population of cells no longer able to form colonies. The viability loss is due to some component of spent medium, active at high pH and high cell density, and can be prevented either by keeping the pH close to neutrality, by washing off the nonsalt components of the medium, or by keeping the saturating cell density low. Exposure to short-chain n-alcohols within a specific time window in stationary phase also prevents viability loss, in an rpoS-dependent fashion. The development of stress resistance, a hallmark of stationary-phase cells, is affected following alcohol treatment, as is the response to extracellular factors in spent medium. Alcohols seem to block cells in an early phase of starvation-induced differentiation, most likely by interfering with processes important for regulation of sigma(s) such as cell density signals and sensing the nutrient content of the medium.

摘要

在稳定期长时间培养过程中,大肠杆菌会经历饥饿诱导的分化,产生高度抗性的细胞。在富含高氨基酸含量的丰富培养基中,将培养物在高细胞密度下进一步培养会导致产生一群不再能够形成菌落的细胞。活力丧失是由于用过的培养基中的某些成分,在高pH值和高细胞密度下具有活性,并且可以通过将pH值保持接近中性、洗去培养基中的非盐成分或保持饱和细胞密度低来防止。在稳定期的特定时间窗口内暴露于短链正醇也以依赖于rpoS的方式防止活力丧失。应激抗性的发展是稳定期细胞的一个标志,在酒精处理后会受到影响,对用过的培养基中的细胞外因子的反应也是如此。醇类似乎在饥饿诱导分化的早期阶段阻止细胞,最有可能是通过干扰对sigma(s)调节重要的过程,如细胞密度信号和感知培养基的营养成分。

相似文献

1
Alcohol-induced delay of viability loss in stationary-phase cultures of Escherichia coli.
J Bacteriol. 2002 Jun;184(11):2898-905. doi: 10.1128/JB.184.11.2898-2905.2002.
2
Physiological, Genetic, and Transcriptomic Analysis of Alcohol-Induced Delay of Death.
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.02113-18. Print 2019 Jan 15.
3
Stress and survival of aging Escherichia coli rpoS colonies.
Genetics. 2004 Sep;168(1):541-6. doi: 10.1534/genetics.104.028704.
5
Functional heterogeneity of RpoS in stress tolerance of enterohemorrhagic Escherichia coli strains.
Appl Environ Microbiol. 2006 Jul;72(7):4978-86. doi: 10.1128/AEM.02842-05.
6
Experimental Evolution of Escherichia coli K-12 at High pH and with RpoS Induction.
Appl Environ Microbiol. 2018 Jul 17;84(15). doi: 10.1128/AEM.00520-18. Print 2018 Aug 1.
8
Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli.
J Bacteriol. 2002 Sep;184(18):5077-87. doi: 10.1128/JB.184.18.5077-5087.2002.
9
Specific growth rate and not cell density controls the general stress response in Escherichia coli.
Microbiology (Reading). 2004 Jun;150(Pt 6):1637-1648. doi: 10.1099/mic.0.26849-0.
10
Role of general stress-response alternative sigma factors σ(S) (RpoS) and σ(B) (SigB) in bacterial heat resistance as a function of treatment medium pH.
Int J Food Microbiol. 2012 Feb 15;153(3):358-64. doi: 10.1016/j.ijfoodmicro.2011.11.027. Epub 2011 Dec 3.

引用本文的文献

1
Heat-shock proteases promote survival of during growth arrest.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4358-4367. doi: 10.1073/pnas.1912082117. Epub 2020 Feb 6.
2
Pseudomonas aeruginosa Ethanol Oxidation by AdhA in Low-Oxygen Environments.
J Bacteriol. 2019 Nov 5;201(23). doi: 10.1128/JB.00393-19. Print 2019 Dec 1.
3
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa.
J Bacteriol. 2019 May 22;201(12). doi: 10.1128/JB.00794-18. Print 2019 Jun 15.
4
Physiological, Genetic, and Transcriptomic Analysis of Alcohol-Induced Delay of Death.
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.02113-18. Print 2019 Jan 15.
5
A Recurrent Silent Mutation Implicates fecA in Ethanol Tolerance by Escherichia coli.
BMC Microbiol. 2018 Apr 18;18(1):36. doi: 10.1186/s12866-018-1180-1.
6
The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase.
Archaea. 2016 May 4;2016:5938289. doi: 10.1155/2016/5938289. eCollection 2016.
7
Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library.
J Ind Microbiol Biotechnol. 2013 Feb;40(2):191-200. doi: 10.1007/s10295-012-1217-7. Epub 2012 Nov 18.

本文引用的文献

1
Evolutionary cheating in Escherichia coli stationary phase cultures.
Genetics. 2001 Jun;158(2):519-26. doi: 10.1093/genetics/158.2.519.
3
Global adaptations resulting from high population densities in Escherichia coli cultures.
J Bacteriol. 2000 Aug;182(15):4158-64. doi: 10.1128/JB.182.15.4158-4164.2000.
4
Antagonists of alcohol inhibition of cell adhesion.
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3690-5. doi: 10.1073/pnas.97.7.3690.
5
Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae.
Mol Biol Cell. 2000 Jan;11(1):183-99. doi: 10.1091/mbc.11.1.183.
6
Ethanol actions on multiple ion channels: which are important?
Alcohol Clin Exp Res. 1999 Oct;23(10):1563-70.
7
Ethanol and protein kinase C.
Alcohol Clin Exp Res. 1999 Sep;23(9):1552-60.
8
Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase.
J Bacteriol. 1999 Sep;181(18):5800-7. doi: 10.1128/JB.181.18.5800-5807.1999.
10
Escherichia coli genes regulated by cell-to-cell signaling.
Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4610-4. doi: 10.1073/pnas.96.8.4610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验