Department of Biology, Kenyon College, Gambier, Ohio, USA.
Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Appl Environ Microbiol. 2018 Jul 17;84(15). doi: 10.1128/AEM.00520-18. Print 2018 Aug 1.
Experimental evolution of K-12 W3110 by serial dilutions for 2,200 generations at high pH extended the range of sustained growth from pH 9.0 to pH 9.3. pH 9.3-adapted isolates showed mutations in DNA-binding regulators and envelope proteins. One population showed an IS knockout of (encoding the positive regulator of the phosphate regulon). A :: knockout increased growth at high pH. mutants are known to increase production of fermentation acids, which could enhance fitness at high pH. Mutations in [poly(A) polymerase] also increased growth at high pH. Three out of four populations showed deletions of , an inhibitor of TorR, which activates expression of (trimethylamine -oxide respiration) at high pH. All populations showed point mutations affecting the stationary-phase sigma factor RpoS, either in the coding gene or in genes for regulators of RpoS expression. RpoS is required for survival at extremely high pH. In our microplate assay, deletion slightly decreased growth at pH 9.1. RpoS protein accumulated faster at pH 9 than at pH 7. The RpoS accumulation at high pH required the presence of one or more antiadaptors that block degradation (IraM, IraD, and IraP). Other genes with mutations after high-pH evolution encode regulators, such as those encoded by () (PhoPQ regulator), (nitrogen starvation sigma factor), , and , as well as envelope proteins, such as those encoded by and Overall, evolution at high pH selects for mutations in key transcriptional regulators, including and the stationary-phase sigma factor RpoS. in its native habitat encounters high-pH stress such as that of pancreatic secretions. Experimental evolution over 2,000 generations showed selection for mutations in regulatory factors, such as deletion of the phosphate regulator PhoB and mutations that alter the function of the global stress regulator RpoS. RpoS is induced at high pH via multiple mechanisms.
通过在高 pH 值下连续稀释,对 K-12 W3110 进行了 2200 代的实验进化,将持续生长的范围从 pH 9.0 扩展到 pH 9.3。适应 pH 9.3 的分离株显示 DNA 结合调节剂和包膜蛋白发生突变。一个种群显示了一个 IS 的缺失(编码磷酸盐调控子的正调控因子)。一个 :: 缺失增加了在高 pH 值下的生长。突变体已知会增加发酵酸的产生,这可以在高 pH 值下提高适应性。 [多聚(A)聚合酶] 的突变也增加了在高 pH 值下的生长。四个种群中有三个显示出 TorR 抑制剂 的缺失,TorR 激活了在高 pH 值下的 (三甲基胺氧化呼吸)的表达。所有种群都显示出影响静止期 σ因子 RpoS 的点突变,要么在编码基因中,要么在 RpoS 表达调控基因中。RpoS 是在极高 pH 值下生存所必需的。在我们的微孔板测定中, 缺失略微降低了在 pH 9.1 下的生长。在 pH 9 下,RpoS 蛋白的积累速度比在 pH 7 下快。在高 pH 值下,RpoS 的积累需要存在一个或多个阻止降解的反适应因子(IraM、IraD 和 IraP)。高 pH 值进化后其他具有突变的基因编码调节剂,如由 (PhoPQ 调节剂)、 (氮饥饿 σ因子)、 、 和 编码的基因,以及包膜蛋白,如由 和 编码的基因。总的来说,在高 pH 值下的进化选择了关键转录调节剂的突变,包括 和静止期 σ因子 RpoS。在其天然栖息地中会遇到高 pH 值的应激,如胰腺分泌物的应激。经过 2000 多代的实验进化,选择了调节因子的突变,如磷酸盐调节子 PhoB 的缺失和改变全局应激调节因子 RpoS 功能的突变。RpoS 通过多种机制在高 pH 值下被诱导。