Suppr超能文献

一种用于蛋白质-配体和蛋白质-蛋白质相互作用微体积分析的新型压力跳跃装置:其在核苷酸与骨骼肌和平滑肌肌球蛋白亚片段-1结合中的应用。

A novel pressure-jump apparatus for the microvolume analysis of protein-ligand and protein-protein interactions: its application to nucleotide binding to skeletal-muscle and smooth-muscle myosin subfragment-1.

作者信息

Pearson David S, Holtermann Georg, Ellison Patricia, Cremo Christine, Geeves Michael A

机构信息

Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.

出版信息

Biochem J. 2002 Sep 1;366(Pt 2):643-51. doi: 10.1042/BJ20020462.

Abstract

Reactions involving proteins frequently involve large changes in volume, which allows the equilibrium position to be perturbed by changes in pressure. Rapid changes in pressure can thus be used to initiate relaxation in pressure; however, this approach is seldom used, because it requires specialized equipment. We have built a microvolume (50 microl) pressure-jump apparatus, powered by a piezoelectric actuator, based on the original design of Clegg and Maxfield [(1976) Rev. Sci. Instrum. 47, 1383-1393]. This equipment can apply pressure changes of +/-20 MPa (maximally) in time periods as short as 80 micros and follow the resulting change in fluorescence signals. The system is relatively simple to use with fast (approx. 1 min) exchange of samples. In the present study, we show that this system can perturb the binding of 2'(3')-O-(N-methylanthraniloyl)-ADP to myosin subfragment-1(S1) from skeletal and smooth muscles. The kinetic data are consistent with previous work, and in addition show that, although 2'(3')-O-(N-methylanthraniloyl)-ADP binds with a similar affinity to both proteins, the increase in molar volume for the skeletal-muscle S1 binding to ADP is half of that for the smooth-muscle protein. This high-volume change for smooth-muscle S1 may be related to the ability of ADP to induce a 23 degrees tilt in the tail of S1 bound to actin.

摘要

涉及蛋白质的反应通常伴随着体积的巨大变化,这使得平衡位置会受到压力变化的干扰。因此,压力的快速变化可用于引发压力弛豫;然而,这种方法很少使用,因为它需要专门的设备。我们基于克莱格和马克斯菲尔德最初的设计[(1976年)《科学仪器评论》47卷,1383 - 1393页],构建了一种由压电致动器驱动的微体积(50微升)压力跳跃装置。该设备能够在短至80微秒的时间段内施加最大±20兆帕的压力变化,并跟踪由此产生的荧光信号变化。该系统使用相对简单,样品更换速度快(约1分钟)。在本研究中,我们表明该系统能够干扰2'(3') - O -(N - 甲基邻氨基苯甲酰基) - ADP与骨骼肌和平滑肌肌球蛋白亚片段 - 1(S1)的结合。动力学数据与先前的工作一致,此外还表明,尽管2'(3') - O -(N - 甲基邻氨基苯甲酰基) - ADP与这两种蛋白质的结合亲和力相似,但骨骼肌S1与ADP结合时摩尔体积的增加是平滑肌蛋白质的一半。平滑肌S1这种较大的体积变化可能与ADP诱导结合肌动蛋白的S1尾部倾斜23度的能力有关。

相似文献

3
Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide.
Biochemistry. 2003 May 27;42(20):6128-35. doi: 10.1021/bi026964f.
5
Vanadate-induced changes in myosin subfragment-1 from cardiac muscle.
Arch Biochem Biophys. 1994 Sep;313(2):229-34. doi: 10.1006/abbi.1994.1381.

引用本文的文献

2
A pressure-jump EPR system to monitor millisecond conformational exchange rates of spin-labeled proteins.
bioRxiv. 2024 May 11:2024.05.07.593074. doi: 10.1101/2024.05.07.593074.
3
Kinetic regulation of multi-ligand binding proteins.
BMC Syst Biol. 2016 Apr 18;10:32. doi: 10.1186/s12918-016-0277-0.
4
Pressure effects on lipids and bio-membrane assemblies.
IUCrJ. 2014 Sep 23;1(Pt 6):470-7. doi: 10.1107/S2052252514019551. eCollection 2014 Nov 1.
5
Resolving Conformational and Rotameric Exchange in Spin-Labeled Proteins Using Saturation Recovery EPR.
Appl Magn Reson. 2010 Jan 1;37(1-4):363. doi: 10.1007/s00723-009-0079-2.
6
Rapid folding of the prion protein captured by pressure-jump.
Eur Biophys J. 2009 Jun;38(5):625-635. doi: 10.1007/s00249-009-0420-6. Epub 2009 Mar 3.
7
Pressure-induced changes in the structure and function of the kinesin-microtubule complex.
Biophys J. 2009 Feb;96(3):1142-50. doi: 10.1016/j.bpj.2008.10.023.
8
Fast pressure jumps can perturb calcium and magnesium binding to troponin C F29W.
Biochemistry. 2008 Nov 18;47(46):12146-58. doi: 10.1021/bi801150w. Epub 2008 Oct 23.
9
Reversible movement of switch 1 loop of myosin determines actin interaction.
EMBO J. 2007 Jan 10;26(1):265-74. doi: 10.1038/sj.emboj.7601482.

本文引用的文献

1
The scope of moderate pressure changes for kinetic and equilibrium studies of biochemical systems.
FEBS Lett. 1976 Dec 31;72(2):199-207. doi: 10.1016/0014-5793(76)80971-4.
3
Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives.
Biophys J. 2000 Jun;78(6):3048-71. doi: 10.1016/S0006-3495(00)76843-3.
4
Kinetic and spectroscopic evidence for three actomyosin:ADP states in smooth muscle.
J Biol Chem. 2000 Aug 18;275(33):25418-26. doi: 10.1074/jbc.M002685200.
5
Microsecond folding of the cold shock protein measured by a pressure-jump technique.
Biochemistry. 1999 Mar 9;38(10):2882-91. doi: 10.1021/bi982487i.
8
Kinetic mechanism of a monomeric kinesin construct.
J Biol Chem. 1997 Jan 10;272(2):717-23. doi: 10.1074/jbc.272.2.717.
9
ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin.
Nat Struct Biol. 1996 Sep;3(9):796-802. doi: 10.1038/nsb0996-796.
10
Myosin isoforms show different strokes for different blokes.
Nat Struct Biol. 1996 Sep;3(9):737-9. doi: 10.1038/nsb0996-737.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验