Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Department of Chemistry and Biochemistry and Stein Eye Institute, University of California, Los Angeles, California, USA.
Protein Sci. 2024 Dec;33(12):e5220. doi: 10.1002/pro.5220.
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the timescale of ps-μs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of μs-ms, corresponding to large-scale protein motions, is inaccessible to those methods. To extend SDSL-EPR to the longer time domain, the perturbation method of pressure-jump relaxation is implemented. Here, we describe a complete high-pressure EPR system at Q-band for both static pressure and ms-timescale pressure-jump measurements on spin-labeled proteins. The instrument enables pressure jumps both up and down from any holding pressure, ranging from atmospheric pressure to the maximum pressure capacity of the system components (~3500 bar). To demonstrate the utility of the system, we characterize a local folding-unfolding equilibrium of T4 lysozyme. The results illustrate the ability of the system to measure thermodynamic and kinetic parameters of protein conformational exchange on the ms timescale.
使用氮氧自由基自旋标记的定点自旋标记电子顺磁共振(SDSL-EPR)是一种成熟的技术,可用于绘制特定部位的二级和三级结构图谱,并监测任何复杂程度的蛋白质的构象变化,包括膜蛋白,具有高灵敏度。SDSL-EPR 还通过连续波线宽分析和自旋晶格弛豫时间方法提供蛋白质在 ps-μs 时间尺度上的动力学信息。然而,与大规模蛋白质运动相对应的μs-ms 这一功能重要的时间域,这些方法无法探测到。为了将 SDSL-EPR 扩展到更长的时间域,采用压力跃变弛豫的微扰方法。在这里,我们描述了一个完整的 Q 波段高压 EPR 系统,用于对自旋标记蛋白进行静态压力和 ms 时间尺度压力跃变测量。该仪器可在任何保持压力(从大气压到系统组件的最大压力容量(约 3500 巴))下进行向上和向下的压力跃变。为了证明该系统的实用性,我们对 T4 溶菌酶的局部折叠-去折叠平衡进行了表征。结果表明,该系统能够测量蛋白质构象交换的热力学和动力学参数在 ms 时间尺度上。