Suppr超能文献

利用饱和恢复电子顺磁共振解析自旋标记蛋白中的构象和旋转异构体交换

Resolving Conformational and Rotameric Exchange in Spin-Labeled Proteins Using Saturation Recovery EPR.

作者信息

Bridges Michael D, Hideg Kálmán, Hubbell Wayne L

机构信息

Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-7008, USA.

出版信息

Appl Magn Reson. 2010 Jan 1;37(1-4):363. doi: 10.1007/s00723-009-0079-2.

Abstract

The function of many proteins involves equilibria between conformational substates, and to elucidate mechanisms of function it is essential to have experimental tools to detect the presence of conformational substates and to determine the time scale of exchange between them. Site-directed spin labeling (SDSL) has the potential to serve this purpose. In proteins containing a nitroxide side chain (R1), multicomponent electron paramagnetic resonance (EPR) spectra can arise either from equilibria involving different conformational substates or rotamers of R1. To employ SDSL to uniquely identify conformational equilibria, it is thus essential to distinguish between these origins of multicomponent spectra. Here we show that this is possible based on the time scale for exchange of the nitroxide between distinct environments that give rise to multicomponent EPR spectra; rotamer exchange for R1 lies in the ≈0.1-1 μs range, while conformational exchange is at least an order of magnitude slower. The time scales of exchange events are determined by saturation recovery EPR, and in favorable cases, the exchange rate constants between substates with lifetimes of approximately 1-70 μs can be estimated by the approach.

摘要

许多蛋白质的功能涉及构象亚态之间的平衡,为了阐明功能机制,拥有检测构象亚态的存在并确定它们之间交换时间尺度的实验工具至关重要。定点自旋标记(SDSL)有潜力用于此目的。在含有氮氧化物侧链(R1)的蛋白质中,多组分电子顺磁共振(EPR)光谱可能源于涉及不同构象亚态或R1旋转异构体的平衡。为了利用SDSL唯一地识别构象平衡,因此必须区分多组分光谱的这些来源。在这里我们表明,基于产生多组分EPR光谱的不同环境之间氮氧化物交换的时间尺度,这是可能的;R1的旋转异构体交换在≈0.1 - 1微秒范围内,而构象交换至少慢一个数量级。交换事件的时间尺度由饱和恢复EPR确定,在有利的情况下,通过该方法可以估计寿命约为1 - 70微秒的亚态之间的交换速率常数。

相似文献

1
Resolving Conformational and Rotameric Exchange in Spin-Labeled Proteins Using Saturation Recovery EPR.
Appl Magn Reson. 2010 Jan 1;37(1-4):363. doi: 10.1007/s00723-009-0079-2.
2
Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins.
Protein Sci. 2009 Aug;18(8):1637-52. doi: 10.1002/pro.180.
3
High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1331-6. doi: 10.1073/pnas.1017877108. Epub 2011 Jan 4.
4
Structural origins of nitroxide side chain dynamics on membrane protein α-helical sites.
Biochemistry. 2010 Nov 30;49(47):10045-60. doi: 10.1021/bi101148w. Epub 2010 Nov 8.
5
Mapping molecular flexibility of proteins with site-directed spin labeling: a case study of myoglobin.
Biochemistry. 2012 Aug 21;51(33):6568-83. doi: 10.1021/bi3005686. Epub 2012 Aug 9.
6
Identifying and quantitating conformational exchange in membrane proteins using site-directed spin labeling.
Acc Chem Res. 2014 Oct 21;47(10):3102-9. doi: 10.1021/ar500228s. Epub 2014 Aug 25.
7
Saturation Recovery EPR and Nitroxide Spin Labeling for Exploring Structure and Dynamics in Proteins.
Methods Enzymol. 2015;564:3-27. doi: 10.1016/bs.mie.2015.07.016. Epub 2015 Aug 15.
9
Conformational analysis of a nitroxide side chain in an α-helix with density functional theory.
J Phys Chem B. 2011 Jan 20;115(2):397-405. doi: 10.1021/jp108871m. Epub 2010 Dec 17.
10
A pressure-jump EPR system to monitor millisecond conformational exchange rates of spin-labeled proteins.
bioRxiv. 2024 May 11:2024.05.07.593074. doi: 10.1101/2024.05.07.593074.

引用本文的文献

5
A pressure-jump EPR system to monitor millisecond conformational exchange rates of spin-labeled proteins.
bioRxiv. 2024 May 11:2024.05.07.593074. doi: 10.1101/2024.05.07.593074.
6
A Highly Ordered Nitroxide Side Chain for Distance Mapping and Monitoring Slow Structural Fluctuations in Proteins.
Appl Magn Reson. 2024;55(1-3):251-277. doi: 10.1007/s00723-023-01618-8. Epub 2023 Oct 14.
10
Effect of Phosphorylation on Interactions between Transmembrane Domains of SERCA and Phospholamban.
Biophys J. 2018 Jun 5;114(11):2573-2583. doi: 10.1016/j.bpj.2018.04.035.

本文引用的文献

1
Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins.
Protein Sci. 2009 Aug;18(8):1637-52. doi: 10.1002/pro.180.
2
Structural origin of weakly ordered nitroxide motion in spin-labeled proteins.
Protein Sci. 2009 May;18(5):893-908. doi: 10.1002/pro.96.
3
Linking folding and binding.
Curr Opin Struct Biol. 2009 Feb;19(1):31-8. doi: 10.1016/j.sbi.2008.12.003. Epub 2009 Jan 20.
4
Function and structure of inherently disordered proteins.
Curr Opin Struct Biol. 2008 Dec;18(6):756-64. doi: 10.1016/j.sbi.2008.10.002. Epub 2008 Nov 17.
6
Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.
8
Electron spin-lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids.
J Magn Reson. 2008 Mar;191(1):66-77. doi: 10.1016/j.jmr.2007.12.003. Epub 2007 Dec 14.
9
Structural determinants of nitroxide motion in spin-labeled proteins: solvent-exposed sites in helix B of T4 lysozyme.
Protein Sci. 2008 Feb;17(2):228-39. doi: 10.1110/ps.073174008. Epub 2007 Dec 20.
10
Sequence of late molecular events in the activation of rhodopsin.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20290-5. doi: 10.1073/pnas.0710393104. Epub 2007 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验