Gür Deniz
Clinical Microbiology Laboratory, I Dogramaci Childrens Hospital, Hacettepe University School of Medicine, Ankara, Turkey.
Int J Clin Pract Suppl. 2002 Mar(125):2-9; discussion 37-9.
Bacteria have evolved a variety of mechanisms to express resistance to beta-lactam antibiotics. beta-Lactamase-induced hydrolysis of the beta-lactam ring is the principal and most important mediator of clinically significant resistance. Almost 200 beta-lactamases have now been identified, of which class 1 chromosomal beta-lactamases, class 2b plasmid-mediated beta-lactamases (especially TEM-1) and class 2be extended-spectrum beta-lactamases (ESBLs) are among the most important in respiratory pathogens. The combination of enzymatic and non-enzymatic resistance mechanisms has led to a steady rise in the prevalence of resistance to beta-lactams among isolates of the major respiratory pathogens, and, in turn, increasing rates of treatment failure, increased mortality, and prolonged morbidity. The combination of a beta-lactam antibiotic with a beta-lactamase inhibitor such as sulbactam, which protects the antibiotic from beta-lactamase destruction and so restores its activity, provides an innovative solution to this problem.
细菌已经进化出多种机制来表达对β-内酰胺类抗生素的耐药性。β-内酰胺酶诱导的β-内酰胺环水解是临床上显著耐药的主要且最重要的介导因素。目前已鉴定出近200种β-内酰胺酶,其中1类染色体β-内酰胺酶、2b类质粒介导的β-内酰胺酶(尤其是TEM-1)和2be类超广谱β-内酰胺酶(ESBLs)是呼吸道病原体中最重要的几种。酶促和非酶促耐药机制的结合导致主要呼吸道病原体分离株中对β-内酰胺类药物的耐药率稳步上升,进而导致治疗失败率增加、死亡率上升和发病期延长。将β-内酰胺类抗生素与β-内酰胺酶抑制剂(如舒巴坦)联合使用,可保护抗生素免受β-内酰胺酶破坏,从而恢复其活性,为这一问题提供了一种创新解决方案。