Lee James W, Mets Laurens, Greenbau Elias
Chemical Technology Division, Oak Ridge National Laboratory, TN 37831-6194, USA.
Appl Biochem Biotechnol. 2002 Spring;98-100:37-48. doi: 10.1385/abab:98-100:1-9:37.
At elevated light intensities (greater than approximately 200 microE/[m2 x s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 microE/(m2 x s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 micromol/[h x mg of chl]) than that of the wild type, DES15 (95 micromol/[h x mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.
在较高光强下(大于约200微爱因斯坦/[平方米·秒]),光子激发速率与热激活电子传递之间的动力学失衡导致光合作用速率饱和。由于陆地太阳辐射最大值可达200微爱因斯坦/(平方米·秒),因此通过实现光子激发与电子传递之间的动力学平衡,尤其是在期望构建低成本高效生物质生产系统的设计大规模光合反应器中,存在显著机会来提高高光强下的光合效率。一种这样的策略是相对于其所服务的反应中心减小叶绿素(chl)天线大小。在本文中,我们报告了该研究领域的最新进展。在空气中二氧化碳浓度为700 ppm的条件下,对衣藻的天线缺陷型突变体(DS521)和野生型(DES15)进行了用于二氧化碳固定的光饱和研究。突变体DS521中二氧化碳同化的光饱和速率约为野生型DES15(95微摩尔/[小时·毫克chl])的两倍(187微摩尔/[小时·毫克chl])。值得注意的是,还观察到光饱和曲线出现了部分线性化。这些结果证实DS521具有较小的相对chl天线大小,并表明减小相对天线大小可提高高光强下光子利用的整体效率。天线缺陷型突变体DS521除了能提高高光强下二氧化碳固定的整体效率外还能对光抑制提供显著抗性。本文报道的实验数据支持了这样的观点,即减小chl天线大小对于光合作用的基础理解以及提高光合二氧化碳固定效率的潜在应用可能具有重大意义。