Suppr超能文献

通过基因工程改造藻类以提高生物燃料产量。

Genetic engineering of algae for enhanced biofuel production.

作者信息

Radakovits Randor, Jinkerson Robert E, Darzins Al, Posewitz Matthew C

机构信息

Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA.

出版信息

Eukaryot Cell. 2010 Apr;9(4):486-501. doi: 10.1128/EC.00364-09. Epub 2010 Feb 5.

Abstract

There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H(2) yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H(2) production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.

摘要

目前,全球正在进行密集的研究工作,旨在通过基因工程增加和改变光合生物、酵母及细菌中脂质、醇类、碳氢化合物、多糖和其他能量储存化合物的积累。已经取得了许多进展,包括提高脂质和碳水化合物产量、提高氢气产量,以及将中心代谢中间体转化为可替代生物燃料。在这些研究工作中,光合微生物因其相对较高的光合转化效率、多样的代谢能力、优异的生长速率以及储存或分泌富含能量的碳氢化合物的能力而备受关注。相对于蓝细菌,真核微藻具有一些与生物燃料生产相关的独特代谢特性,包括积累大量三酰甘油;合成储存淀粉(支链淀粉和直链淀粉),这与高等植物中的淀粉类似;以及能够有效地将光合电子传递与氢气生产耦合。尽管利用基因工程改善真核微藻能量生产表型的研究尚处于起步阶段,但最近在微藻模型系统的基因操作工具开发方面取得了重大进展,并正用于操纵这些生物体的中心碳代谢。很可能这些进展中的许多都可以扩展到具有工业相关性的生物体。本综述聚焦于为将微藻作为生产生物氢、淀粉衍生醇类、柴油燃料替代品和/或烷烃的生物燃料平台而可能采用的基因工程潜在途径。

相似文献

1
Genetic engineering of algae for enhanced biofuel production.
Eukaryot Cell. 2010 Apr;9(4):486-501. doi: 10.1128/EC.00364-09. Epub 2010 Feb 5.
3
Energy conservation in photosynthetic microorganisms.
J Gen Appl Microbiol. 2020 Jun 17;66(2):59-65. doi: 10.2323/jgam.2020.02.002. Epub 2020 Apr 24.
4
Placing microalgae on the biofuels priority list: a review of the technological challenges.
J R Soc Interface. 2010 May 6;7(46):703-26. doi: 10.1098/rsif.2009.0322. Epub 2009 Dec 23.
5
Engineering algae for biohydrogen and biofuel production.
Curr Opin Biotechnol. 2009 Jun;20(3):264-71. doi: 10.1016/j.copbio.2009.06.002. Epub 2009 Jun 25.
6
Metabolic Engineering of Microalgae for Biofuel Production.
Methods Mol Biol. 2020;1980:153-172. doi: 10.1007/7651_2018_205.
7
A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria.
Biotechnol Adv. 2010 Nov-Dec;28(6):742-6. doi: 10.1016/j.biotechadv.2010.05.021. Epub 2010 Jun 1.
8
An outlook on microalgal biofuels.
Science. 2010 Aug 13;329(5993):796-9. doi: 10.1126/science.1189003.
9
Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review.
Bioresour Technol. 2021 Nov;339:125597. doi: 10.1016/j.biortech.2021.125597. Epub 2021 Jul 17.
10
Genetic engineering of microalgae for enhanced lipid production.
Biotechnol Adv. 2021 Nov 15;52:107836. doi: 10.1016/j.biotechadv.2021.107836. Epub 2021 Sep 14.

引用本文的文献

1
A novel acidic laminarinase derived from Jermuk hot spring metagenome.
Appl Microbiol Biotechnol. 2025 Jul 26;109(1):172. doi: 10.1007/s00253-025-13557-4.
3
The role of nanoparticles in transforming plant genetic engineering: advancements, challenges and future prospects.
Funct Integr Genomics. 2025 Jan 22;25(1):23. doi: 10.1007/s10142-025-01528-x.
4
Challenges and opportunities for third-generation ethanol production: A critical review.
Eng Microbiol. 2022 Oct 29;3(1):100056. doi: 10.1016/j.engmic.2022.100056. eCollection 2023 Mar.
7
Exceptional Quantum Efficiency Powers Biomass Production in Halotolerant Algae Picochlorum sp.
Photosynth Res. 2024 Dec;162(2-3):439-457. doi: 10.1007/s11120-024-01075-9. Epub 2024 Feb 8.
8
Simple and Effective Squash-PCR for Rapid Genotyping of Industrial Microalgae.
Life (Basel). 2024 Jan 12;14(1):115. doi: 10.3390/life14010115.
10
Enhanced extracellular ammonium release in the plant endophyte through genome editing.
Microbiol Spectr. 2024 Jan 11;12(1):e0247823. doi: 10.1128/spectrum.02478-23. Epub 2023 Dec 1.

本文引用的文献

1
Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms.
Funct Plant Biol. 2007 Jun;34(6):465-473. doi: 10.1071/FP06313.
3
RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii.
Eukaryot Cell. 2010 Jan;9(1):97-106. doi: 10.1128/EC.00203-09. Epub 2009 Nov 13.
5
How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17331-6. doi: 10.1073/pnas.0905343106. Epub 2009 Sep 28.
6
Gene silencing in the marine diatom Phaeodactylum tricornutum.
Nucleic Acids Res. 2009 Aug;37(14):e96. doi: 10.1093/nar/gkp448. Epub 2009 May 31.
7
Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
J Biotechnol. 2009 Jun 1;142(1):70-7. doi: 10.1016/j.jbiotec.2009.02.015. Epub 2009 Mar 9.
8
Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms.
J Biotechnol. 2009 Jun 1;142(1):21-30. doi: 10.1016/j.jbiotec.2009.01.015. Epub 2009 Feb 6.
9
The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.
J Biol Chem. 2009 Aug 28;284(35):23415-25. doi: 10.1074/jbc.M109.003541. Epub 2009 May 28.
10
Microbial production of advanced transportation fuels in non-natural hosts.
Curr Opin Biotechnol. 2009 Jun;20(3):307-15. doi: 10.1016/j.copbio.2009.04.002. Epub 2009 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验