Suppr超能文献

一种代数多重网格算法与用于模拟地下水流和运移的两种迭代求解器的比较。

Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport.

作者信息

Detwiler Russell L, Mehl Steffen, Rajaram Harihar, Cheung Wendy W

机构信息

Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder 80309-0428, USA.

出版信息

Ground Water. 2002 May-Jun;40(3):267-72. doi: 10.1111/j.1745-6584.2002.tb02654.x.

Abstract

Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

摘要

大规模地下水流与运移问题的数值解常常受到用于求解所得方程组的迭代求解器收敛行为的限制。我们展示了一种代数多重网格算法(AMG)有效求解大型稀疏方程组的能力,这些方程组源自大型复杂区域地下水流与运移的计算模型。与几何多重网格方法不同,该算法适用于复杂流动几何形状的问题,比如在两相流与运移的孔隙尺度建模中遇到的问题。我们将AMG集成到MODFLOW 2000中,以比较使用AMG进行的二维和三维水流模拟与使用PCG2进行的模拟,PCG2是一种预处理共轭梯度求解器,使用修正不完全乔列斯基预处理,包含在MODFLOW 2000中。使用AMG收敛所需的CPU时间比PCG2快达140倍。这种速度提升的代价是三维问题所需的随机存取存储器(RAM)增加多达九倍,二维问题所需的RAM增加多达四倍。我们还比较了使用AMG和具有不完全LU分解预处理的广义最小残差法进行的二维稳态运移数值模拟。对于这些运移模拟,AMG的速度提升高达17倍,而所需的RAM仅增加20%。AMG求解大型复杂流动系统中水流与运移问题的能力及其易于获取的特性使其成为适用于现场尺度和孔隙尺度建模的理想求解器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验