Suppr超能文献

用于心脏双域模型的代数多重网格预处理器。

Algebraic multigrid preconditioner for the cardiac bidomain model.

作者信息

Plank Gernot, Liebmann Manfred, Weber dos Santos Rodrigo, Vigmond Edward J, Haase Gundolf

机构信息

Institute of Biophysics, Center for Physiological Medicine, Medical University Graz, Harrachgasse 21, A-8010 Graz, Austria.

出版信息

IEEE Trans Biomed Eng. 2007 Apr;54(4):585-96. doi: 10.1109/TBME.2006.889181.

Abstract

The bidomain equations are considered to be one of the most complete descriptions of the electrical activity in cardiac tissue, but large scale simulations, as resulting from discretization of an entire heart, remain a computational challenge due to the elliptic portion of the problem, the part associated with solving the extracellular potential. In such cases, the use of iterative solvers and parallel computing environments are mandatory to make parameter studies feasible. The preconditioned conjugate gradient (PCG) method is a standard choice for this problem. Although robust, its efficiency greatly depends on the choice of preconditioner. On structured grids, it has been demonstrated that a geometric multigrid preconditioner performs significantly better than an incomplete LU (ILU) preconditioner. However, unstructured grids are often preferred to better represent organ boundaries and allow for coarser discretization in the bath far from cardiac surfaces. Under these circumstances, algebraic multigrid (AMG) methods are advantageous since they compute coarser levels directly from the system matrix itself, thus avoiding the complexity of explicitly generating coarser, geometric grids. In this paper, the performance of an AMG preconditioner (BoomerAMG) is compared with that of the standard ILU preconditioner and a direct solver. BoomerAMG is used in two different ways, as a preconditioner and as a standalone solver. Two 3-D simulation examples modeling the induction of arrhythmias in rabbit ventricles were used to measure performance in both sequential and parallel simulations. It is shown that the AMG preconditioner is very well suited for the solution of the bidomain equation, being clearly superior to ILU preconditioning in all regards, with speedups by factors in the range 5.9-7.7.

摘要

双域方程被认为是对心脏组织电活动最完整的描述之一,但由于问题的椭圆部分,即与求解细胞外电位相关的部分,由整个心脏离散化产生的大规模模拟仍然是一个计算挑战。在这种情况下,必须使用迭代求解器和并行计算环境以使参数研究可行。预处理共轭梯度(PCG)方法是解决此问题的标准选择。尽管它很稳健,但其效率很大程度上取决于预处理程序的选择。在结构化网格上,已经证明几何多重网格预处理程序的性能明显优于不完全LU(ILU)预处理程序。然而,非结构化网格通常更受青睐,因为它能更好地表示器官边界,并允许在远离心脏表面的浴液中进行更粗的离散化。在这种情况下,代数多重网格(AMG)方法具有优势,因为它们直接从系统矩阵本身计算更粗的层次,从而避免了显式生成更粗的几何网格的复杂性。在本文中,将一种AMG预处理程序(BoomerAMG)的性能与标准ILU预处理程序和直接求解器的性能进行了比较。BoomerAMG以两种不同的方式使用,作为预处理程序和作为独立求解器。使用两个模拟兔心室心律失常诱发的三维模拟示例来测量顺序模拟和并行模拟中的性能。结果表明,AMG预处理程序非常适合求解双域方程,在所有方面都明显优于ILU预处理,加速比在5.9 - 7.7范围内。

相似文献

4
Reduced-order preconditioning for bidomain simulations.双域模拟的降阶预处理
IEEE Trans Biomed Eng. 2007 May;54(5):938-42. doi: 10.1109/TBME.2006.889203.
10
A comparison of multilevel solvers for the cardiac bidomain equations.心脏双域方程多层求解器的比较。
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:7204-7. doi: 10.1109/IEMBS.2005.1616171.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验