Noonan Ryan C, Carter CW Charles W, Bagdassarian Carey K
Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA.
Protein Sci. 2002 Jun;11(6):1424-34. doi: 10.1110/ps.0202102.
Analysis of the crystal structures for cytidine deaminase complexed with substrate analog 3-deazacytidine, transition-state analog zebularine 3,4-hydrate, and product uridine establishes significant changes in the magnitude of atomic-scale fluctuations along the (approximate) reaction coordinate of this enzyme. Differences in fluctuations between the substrate analog complex, transition-state analog complex, and product complex are monitored via changes in corresponding crystallographic temperature factors. Previously, we reported that active-site conformational disorder is substantially reduced in the transition-state complex relative to the two ground-state complexes. Here, this result is statistically corroborated by crystallographic data for fluorinated zebularine 3,4-hydrate, a second transition-state analog, and by multiple regression analysis. Multiple regression explains 70% of the total temperature factor variation through a predictive model for the average B-value of an amino acid as a function of the catalytic state of the enzyme (substrate, transition state, product) and five other physical and structural descriptors. Furthermore, correlations of atomic fluctuation magnitudes throughout the body of each complex are quantified through an auto-correlation function. The transition-state analog complex shows the greatest correlations between temperature factor magnitudes for spatially separated atoms, underscoring the strong ability of this reaction-coordinate species to "organize" enzymatic fluctuations. The catalytic significance for decreased atomic-scale motions in the transition state is discussed. A thermodynamic argument indicates that the significant decreases in local enzymatic conformational entropy at the transition state result in enhanced energetic stabilization there.
对胞苷脱氨酶与底物类似物3 - 脱氮胞苷、过渡态类似物泽布勒林3,4 - 水合物以及产物尿苷形成的复合物的晶体结构分析表明,沿着该酶(近似)反应坐标的原子尺度波动幅度发生了显著变化。通过相应晶体学温度因子的变化来监测底物类似物复合物、过渡态类似物复合物和产物复合物之间波动的差异。此前,我们报道过相对于两种基态复合物,过渡态复合物中活性位点的构象无序度大幅降低。在此,这一结果通过第二种过渡态类似物氟化泽布勒林3,4 - 水合物的晶体学数据以及多元回归分析得到了统计学上的证实。多元回归通过一个预测模型解释了总温度因子变化的70%,该模型将氨基酸的平均B值作为酶的催化状态(底物、过渡态、产物)以及其他五个物理和结构描述符的函数。此外,通过自相关函数对每个复合物整体中原子波动幅度的相关性进行了量化。过渡态类似物复合物在空间上分离的原子的温度因子幅度之间显示出最大的相关性,突出了这种反应坐标物种“组织”酶促波动的强大能力。讨论了过渡态中原子尺度运动减少的催化意义。一个热力学观点表明,过渡态处局部酶促构象熵的显著降低导致那里的能量稳定性增强。