Suppr超能文献

Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis.

作者信息

Xiang S, Short S A, Wolfenden R, Carter C W

机构信息

Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599-7260, USA.

出版信息

Biochemistry. 1996 Feb 6;35(5):1335-41. doi: 10.1021/bi9525583.

Abstract

The cytidine deaminase substrate analog inhibitor 3-deazacytidine binds with its 4-amino group inserted into a site previously identified as a probable binding site for the leaving ammonia group. Binding to this site shifts the pyrimidine ring significantly further from the activated water molecule than the position it occupies in either of two complexes with compounds capable of hydrogen bonding at the 3-position of the ring [Xiang et al. (1995) Biochemistry 34, 4516-4523]. Difference Fourier maps between the deazacytidine, dihydrozebularine, and zebularine--hydrate inhibitor complexes suggest that the ring itself moves successively toward the activated water, leaving the amino group behind in this site as the substrate complex approaches the transition state. They also reveal systematic changes in a single zinc-sulfur bond distance. These correlate with chemical changes expected as the substrate approaches the tetrahedral transition state, in which the zinc-activated hydroxyl group develops maximal negative charge and forms a short hydrogen bond to the neighboring carboxylate group of Glu 104. Empirical bond valence relationships suggest that the Zn-S gamma 132 bond functions throughout the reaction as a "valence buffer" that accommodates changing negative charge on the hydroxyl group. Similar structural features in alcohol dehydrogenase suggest that analogous mechanisms may be a general feature of catalysis by zinc enzymes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验