De Clerck Fred, Van de Water André, D'Aubioul Jan, Lu Hua Rong, van Rossem Koen, Hermans An, Van Ammel Karel
Center of Excellence for Cardiovascular Safety Research, Janssen Research Foundation, Turnhoutseweg 30, B-2340 Beerse, Belgium.
Fundam Clin Pharmacol. 2002 Apr;16(2):125-40. doi: 10.1046/j.1472-8206.2002.00081.x.
In addition to in silico and in vitro measurements, cardiac electrophysiology in experimental animals plays a decisive role in the selection of a potential 'cardio-safe' new chemical entity (NCE). The present synopsis critically reviews such in vivo techniques in experimental animals. In anaesthetized guinea-pigs, surface ECG recordings readily identify the typical effects of Class I to IV anti-arrhythmic compounds and of If blockers such as zatebradine on ECG intervals and morphology, but also of non-cardiovascular NCEs affecting cardiac electrical activity via ion channels or neurogenic mechanisms. QT/RR plots indicate that bradycardia is a dominant effect of IKr blockers (dual modulation by IKr of sinus node activity and ventricular repolarization). Nevertheless, correction of QT with Bazett's formula usually distinguishes between drug-induced heart rate reduction and real prolongation of ventricular repolarization (QTc). The anaesthetized guinea-pig model thus is a useful tool for first line in vivo testing of an NCE for effects on cardiac electrophysiology, in particular when combined with measurements of drug levels in plasma and heart tissues. In anaesthetized dogs, advanced ECG analyses identify drug-induced effects on atrial and ventricular intervals, on temporal and transmural dispersion of ventricular repolarization and on incidences of early after-depolarizations. This can be combined with complete haemodynamic, pulmonary and pharmacokinetic analyses in one preparation. However, compound doses/plasma levels needed for effects on ventricular repolarization in this model are substantially higher than those identified in guinea-pigs, at least for IKr blocking compounds. Therefore, we use this 'information-rich' canine model as a second line approach. In awake, trained and appropriately instrumented dogs, readings of surface ECG in combination with cardio-haemodynamic and behavioural assessments can be performed after the administration of an NCE via the expected therapeutic route, including oral medication. However, at higher doses the compound under scrutiny may induce overall behavioural side-effects, related to its primary pharmacological action, such as gastrokinetic repercussions or CNS-mediated sedation or excitation. Such primary pharmacological effects are bound to compromise the evaluation of real drug-induced changes on cardiac electrophysiology, readily identified by resource-friendly setups in smaller animals. Therefore, we use such paradigms as an imperative, final cardiovascular check-up, before a 'First in Man' administration of the NCE. In anaesthetized, methoxamine-challenged rabbits, arrhythmogenic effects of IKr blockers (torsades de pointes) and of dual channel INa/IKr blockers (conduction disturbances) are readily identified. Drug-induced QT dispersion rather than a 'simple' QTc prolongation determines the ventricular arrhythmogenic effect of IKr blockers. The latter effect also depends on the rate of drug delivery (plasma levels vs. heart level, equilibrium throughout the myocardium). Therefore, we use models sensitized for arrhythmogenesis to document further the profile of a comparatively 'cardio-safe' NCE. We conclude that the interpretation of an integrated profile of activity of an NCE on in vitro and in vivo cardiovascular parameters, in comparison with the characteristics of its primary pharmacology and target disease, determines its eventual selection via a scientific, rather than a 'checklist' or 'menu' approach to cardiovascular safety pharmacology. Appropriate tests in experimental animals play a key role in this process.
除了计算机模拟和体外测量外,实验动物的心脏电生理学在潜在“心脏安全”新化学实体(NCE)的筛选中起着决定性作用。本综述对实验动物中的此类体内技术进行了批判性评价。在麻醉的豚鼠中,体表心电图记录可以很容易地识别出I类至IV类抗心律失常化合物以及If阻滞剂(如扎替雷定)对心电图间期和形态的典型影响,也能识别出通过离子通道或神经源性机制影响心脏电活动的非心血管NCEs的影响。QT/RR图表明,心动过缓是IKr阻滞剂的主要作用(IKr对窦房结活动和心室复极的双重调节)。然而,用Bazett公式校正QT通常可以区分药物引起的心率降低和心室复极的真正延长(QTc)。因此,麻醉豚鼠模型是用于对NCE进行心脏电生理效应的一线体内测试的有用工具,特别是当与血浆和心脏组织中的药物水平测量相结合时。在麻醉犬中,先进的心电图分析可以识别药物对心房和心室间期、心室复极的时间和跨壁离散以及早期后除极发生率的影响。这可以与在同一标本上进行的完整血流动力学、肺和药代动力学分析相结合。然而,该模型中影响心室复极所需的化合物剂量/血浆水平远高于豚鼠中确定的剂量,至少对于IKr阻断化合物是这样。因此,我们将这种“信息丰富”的犬模型用作二线方法。在清醒、经过训练且适当装备的犬中,通过预期的治疗途径(包括口服给药)给予NCE后,可以结合心脏血流动力学和行为评估进行体表心电图读数。然而,在较高剂量下,受审查的化合物可能会引起总体行为副作用,这与其主要药理作用有关,如胃肠动力反应或中枢神经系统介导的镇静或兴奋。这种主要药理作用必然会损害对药物引起的心脏电生理真正变化的评估,而在较小动物中通过资源友好的设置很容易识别这些变化。因此,在NCE进行“首次人体给药”之前,我们将此类范例用作必要的最终心血管检查。在麻醉的、用甲氧明激发的兔中,很容易识别出IKr阻滞剂(尖端扭转型室速)和双通道INa/IKr阻滞剂(传导障碍)的致心律失常作用。药物引起的QT离散而非“简单的”QTc延长决定了IKr阻滞剂的心室致心律失常作用。后一种作用还取决于药物递送速率(血浆水平与心脏水平,整个心肌的平衡)。因此,我们使用对心律失常敏感的模型来进一步记录相对“心脏安全”的NCE的特征。我们得出结论,与NCE的主要药理学特征和目标疾病特征相比,对其体外和体内心血管参数活性综合概况的解释决定了通过科学方法而非“清单”或“菜单”式心血管安全药理学方法对其进行最终选择。在实验动物中进行适当的测试在这一过程中起着关键作用。