Taylor Robin
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England.
Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 No 1):879-88. doi: 10.1107/s090744490200358x. Epub 2002 May 29.
Several studies show that the molecular geometries and intermolecular interactions observed in small-molecule crystal structures are relevant to the modelling of in vivo situations, although the influence of crystal packing is sometimes important and should always be borne in mind. Torsional distributions derived from the Cambridge Structural Database (CSD) can be used to map out potential-energy surfaces and thereby help identify experimentally validated conformational minima of molecules with several rotatable bonds. The use of crystallographic data in this way is complementary to in vacuo theoretical calculations since it gives insights into conformational preferences in condensed-phase situations. Crystallographic data also underpin many molecular-fragment libraries and programs for generating three-dimensional models from two-dimensional chemical structures. The modelling of ligand binding to metalloenzymes is assisted by information in the CSD on preferred coordination numbers and geometries. CSD data on intermolecular interactions are useful in structure-based inhibitor design both in indicating how probable a protein-ligand interaction is and what its geometry is likely to be. They can also be used to guide searches for bioisosteric replacements. Crystallographically derived information has contributed to many life-science software applications, including programs for locating binding 'hot spots' on proteins, docking ligands into enzyme active sites, de novo ligand design, molecular superposition and three-dimensional QSAR. Overall, crystallographic data in general, and the CSD in particular, are very significant tools for the rational design of biologically active molecules.
多项研究表明,在小分子晶体结构中观察到的分子几何形状和分子间相互作用与体内情况的建模相关,尽管晶体堆积的影响有时很重要,应始终牢记。源自剑桥结构数据库(CSD)的扭转分布可用于绘制势能面,从而有助于识别具有多个可旋转键的分子经实验验证的构象最小值。以这种方式使用晶体学数据与真空理论计算互补,因为它能深入了解凝聚相情况下的构象偏好。晶体学数据还为许多分子片段库以及从二维化学结构生成三维模型的程序提供了基础。CSD中关于优选配位数和几何形状的信息有助于金属酶配体结合的建模。CSD中关于分子间相互作用的数据在基于结构的抑制剂设计中很有用,既可以表明蛋白质 - 配体相互作用的可能性,也可以表明其可能的几何形状。它们还可用于指导生物电子等排体替代物的搜索。晶体学衍生的信息已应用于许多生命科学软件应用中,包括在蛋白质上定位结合“热点”、将配体对接至酶活性位点、从头设计配体、分子叠合和三维定量构效关系等程序。总体而言,一般的晶体学数据,特别是CSD,是合理设计生物活性分子的非常重要的工具。