Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
BMC Bioinformatics. 2010 Jun 2;11:298. doi: 10.1186/1471-2105-11-298.
A good scoring function is essential for molecular docking computations. In conventional scoring functions, energy terms modeling pairwise interactions are cumulatively summed, and the best docking solution is selected. Here, we propose to transform protein-ligand interactions into three-dimensional geometric networks, from which recurring network substructures, or network motifs, are selected and used to provide probability-ranked interaction templates with which to score docking solutions.
A novel scoring function for protein-ligand docking, MotifScore, was developed. It is non-energy-based, and docking is, instead, scored by counting the occurrences of motifs of protein-ligand interaction networks constructed using structures of protein-ligand complexes. MotifScore has been tested on a benchmark set established by others to assess its ability to identify near-native complex conformations among a set of decoys. In this benchmark test, 84% of the highest-scored docking conformations had root-mean-square deviations (rmsds) below 2.0 A from the native conformation, which is comparable with the best of several energy-based docking scoring functions. Many of the top motifs, which comprise a multitude of chemical groups that interact simultaneously and make a highly significant contribution to MotifScore, capture recurrent interacting patterns beyond pairwise interactions.
While providing quite good docking scores, MotifScore is quite different from conventional energy-based functions. MotifScore thus represents a new, network-based approach for exploring problems associated with molecular docking.
良好的打分函数对于分子对接计算至关重要。在传统的打分函数中,对模拟成对相互作用的能量项进行累积求和,并选择最佳对接解决方案。在这里,我们建议将蛋白质-配体相互作用转化为三维几何网络,从中选择反复出现的网络子结构或网络基元,并使用它们提供概率排序的相互作用模板来对对接解决方案进行评分。
我们开发了一种新的蛋白质-配体对接打分函数,即 MotifScore。它是非能量基的,而是通过计算使用蛋白质-配体复合物结构构建的蛋白质-配体相互作用网络的基元出现次数来对对接进行评分。MotifScore 已在其他人建立的基准集上进行了测试,以评估其在一组诱饵中识别近天然复合物构象的能力。在这项基准测试中,得分最高的对接构象中有 84%的构象与天然构象的均方根偏差 (rmsd) 低于 2.0A,与几种基于能量的对接打分函数中的最佳结果相当。许多排在前列的基元包含了大量相互作用的化学基团,它们同时相互作用,对 MotifScore 做出了非常重要的贡献,捕捉到了超越成对相互作用的反复出现的相互作用模式。
虽然提供了相当好的对接评分,但 MotifScore 与传统的基于能量的函数有很大的不同。因此,MotifScore 代表了一种新的基于网络的方法,用于探索与分子对接相关的问题。