School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia.
School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
Angew Chem Int Ed Engl. 2019 Nov 18;58(47):16780-16784. doi: 10.1002/anie.201906602. Epub 2019 Aug 19.
Most structure-based drug discovery methods utilize crystal structures of receptor proteins. Crystal engineering, on the other hand, utilizes the wealth of chemical information inherent in small-molecule crystal structures in the Cambridge Structural Database (CSD). We show that the interaction surfaces and shapes of molecules in experimentally determined small-molecule crystal structures can serve as effective tools in drug discovery. Our description of the shape and interaction propensities of molecules in their crystal structures can be used to screen them for specific binding compatibility with protein targets, as demonstrated through the high-throughput profiling of around 138 000 small-molecule structures in the CSD and a series of drug-protein crystal structures. Electron-density-based intermolecular boundary surfaces in small-molecule crystal structures and in target-protein pockets are utilized to identify potential ligand molecules from the CSD based on 3D shape and intermolecular interaction matching.
大多数基于结构的药物发现方法都利用受体蛋白的晶体结构。另一方面,晶体工程利用剑桥结构数据库 (CSD) 中小分子晶体结构中固有的丰富化学信息。我们表明,实验确定的小分子晶体结构中分子的相互作用表面和形状可以作为药物发现的有效工具。我们对晶体结构中分子的形状和相互作用倾向的描述可用于筛选它们与蛋白质靶标的特定结合兼容性,这已通过 CSD 中约 138000 种小分子结构的高通量分析和一系列药物-蛋白质晶体结构得到证明。小分子晶体结构中和靶蛋白口袋中的基于电子密度的分子间边界表面被用于基于 3D 形状和分子间相互作用匹配从 CSD 中识别潜在的配体分子。