Suppr超能文献

通过全内反射水相荧光显微镜分析运动性大肠杆菌细胞的可逆和不可逆黏附。

Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy.

作者信息

Vigeant Margot A-S, Ford Roseanne M, Wagner Michael, Tamm Lukas K

机构信息

Department of Chemical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22904-4741, USA.

出版信息

Appl Environ Microbiol. 2002 Jun;68(6):2794-801. doi: 10.1128/AEM.68.6.2794-2801.2002.

Abstract

The initial events in bacterial adhesion are often explained as resulting from electrostatic and van der Waals forces between the cell and the surface, as described by DLVO theory (developed by Derjaguin, Landau, Verwey, and Overbeek). Such a theory predicts that negatively charged bacteria will experience greater attraction toward a negatively charged surface as the ionic strength of the medium is increased. In the present study we observed both smooth-swimming and nonmotile Escherichia coli bacteria close to plain, positively, and hydrophobically coated quartz surfaces in high- and low-ionic-strength media by using total internal reflection aqueous fluorescence microscopy. We found that reversibly adhering cells (cells which continue to swim along the surface for extended periods) are too distant from the surface for this behavior to be explained by DLVO-type forces. However, cells which had become immobilized on the surface did seem to be affected by electrostatic interactions. We propose that the "force" holding swimming cells near the surface is actually the result of a hydrodynamic effect, causing the cells to swim at an angle along the glass, and that DLVO-type forces are responsible only for the observed immobilization of irreversibly adhering cells. We explain our observations within the context of a conceptual model in which bacteria that are interacting with the surface may be thought of as occupying one of three compartments: bulk fluid, near-surface bulk, and near-surface constrained. A cell in these compartments feels either no effect of the surface, only the hydrodynamic effect of the surface, or both the hydrodynamic and the physicochemical effects of the surface, respectively.

摘要

细菌黏附的初始事件通常被解释为细胞与表面之间静电和范德华力作用的结果,正如DLVO理论(由Derjaguin、Landau、Verwey和Overbeek提出)所描述的那样。该理论预测,随着介质离子强度的增加,带负电荷的细菌会对带负电荷的表面产生更大的吸引力。在本研究中,我们使用全内反射水相荧光显微镜,观察了高离子强度和低离子强度介质中靠近光滑、带正电荷和疏水涂层石英表面的平滑游动和不运动的大肠杆菌。我们发现,可逆黏附细胞(即长时间沿表面游动的细胞)与表面距离过远,无法用DLVO型力来解释这种行为。然而,固定在表面的细胞似乎确实受到了静电相互作用的影响。我们提出,使游动细胞靠近表面的“力”实际上是一种流体动力学效应的结果,导致细胞沿玻璃表面以一定角度游动,而DLVO型力仅导致观察到的不可逆黏附细胞的固定。我们在一个概念模型的框架内解释我们的观察结果,在这个模型中,与表面相互作用的细菌可以被认为占据三个区域之一:本体流体、近表面本体和近表面受限区域。处于这些区域的细胞分别感觉不到表面的影响、只感觉到表面的流体动力学效应或同时感觉到表面的流体动力学和物理化学效应。

相似文献

5
Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces.细菌粘附于亲水和疏水表面所涉及的力。
Microbiology (Reading). 2008 Oct;154(Pt 10):3122-3133. doi: 10.1099/mic.0.2008/018622-0.
7
Measurement of microbial adhesive forces with a parallel plate flow chamber.使用平行平板流动腔测量微生物粘附力。
J Colloid Interface Sci. 2014 Oct 15;432:77-85. doi: 10.1016/j.jcis.2014.06.052. Epub 2014 Jul 5.

引用本文的文献

2
Speed-dependent bacterial surface swimming.速度依赖型细菌表面游动。
Appl Environ Microbiol. 2024 Jun 18;90(6):e0050824. doi: 10.1128/aem.00508-24. Epub 2024 May 8.
8
Swimming back Toward Stiffer Polyetheylene Glycol Coatings, Increasing Contact in Flow.向更硬的聚乙二醇涂层游回,增加流动中的接触。
ACS Appl Mater Interfaces. 2021 Apr 21;13(15):17196-17206. doi: 10.1021/acsami.1c00245. Epub 2021 Apr 6.
10
Biophysical methods to quantify bacterial behaviors at oil-water interfaces.生物物理方法定量研究油水界面处细菌行为。
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):725-738. doi: 10.1007/s10295-020-02293-5. Epub 2020 Aug 2.

本文引用的文献

2
Bacterial adhesion: A physicochemical approach.细菌黏附:物理化学方法。
Microb Ecol. 1989 Jan;17(1):1-15. doi: 10.1007/BF02025589.
3
Biofilm parameters influencing biocide efficacy.影响杀菌剂功效的生物膜参数。
Biotechnol Bioeng. 1995 Jun 20;46(6):553-60. doi: 10.1002/bit.260460608.
7
The effect of motility and cell-surface polymers on bacterial attachment.
Microbiology (Reading). 1999 Oct;145 ( Pt 10):2797-802. doi: 10.1099/00221287-145-10-2797.
10
Functions of bacterial flagella.细菌鞭毛的功能。
Crit Rev Microbiol. 1996;22(2):67-100. doi: 10.3109/10408419609106456.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验