发育性热性惊厥以亚型和细胞特异性方式调节海马中超级化激活通道的基因表达。

Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner.

作者信息

Brewster Amy, Bender Roland A, Chen Yuncai, Dube Celine, Eghbal-Ahmadi Mariam, Baram Tallie Z

机构信息

Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California at Irvine, Irvine, California 92697-4475.

出版信息

J Neurosci. 2002 Jun 1;22(11):4591-9. doi: 10.1523/JNEUROSCI.22-11-04591.2002.

Abstract

Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (I(H)). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide-gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of the HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network.

摘要

热性惊厥不仅是发育中人类最常见的惊厥类型,还可能促使后续边缘叶癫痫的发生。我们之前的研究表明,在未成熟大鼠模型中,长时间的实验性热性惊厥会长期增加海马兴奋性,增强对未来惊厥的易感性。这些深刻的致痫前变化机制并不需要细胞死亡,且与超极化激活的去极化电流(I(H))的长期动力学减慢有关。在此我们表明,这些惊厥会调节编码该电流的基因——超极化激活的环核苷酸门控通道(HCNs)的表达:在表达多种HCN亚型的CA1神经元中,惊厥诱导HCN1 mRNA协同减少以及HCN2表达增强,从而改变神经元HCN表型。惊厥诱导的HCN2表达增加除了涉及CA1外还涉及CA3,而对于HCN4,在两个海马区域中其mRNA表达均未因惊厥而改变。HCNs这种亚型和区域特异性的转录调控需要神经元活动而非单纯的体温过高,与惊厥持续时间相关,且有利于形成动力学缓慢的HCN2编码通道。总之,这些数据证明了发育性惊厥对HCN分子的一种新的、依赖活动的转录调控。这些变化导致特定海马神经元群体的HCN表型发生持久改变,对海马网络的兴奋性产生深远影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索