Chen Ming-Hui, Ibrahim Joseph G, Lipsitz Stuart R
Department of Statistics, University of Connecticut, USA.
Lifetime Data Anal. 2002 Jun;8(2):117-46. doi: 10.1023/a:1014835522957.
We propose methods for Bayesian inference for missing covariate data with a novel class of semiparametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout. We propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. The proposed class of priors are shown to be useful in recovering information on the missing covariates especially in situations where the missing data fraction is large. Properties of the proposed prior and resulting posterior distributions are examined. Also, model checking techniques are proposed for sensitivity analyses and for checking the goodness of fit of a particular model. Specifically, we extend the Conditional Predictive Ordinate (CPO) statistic to assess goodness of fit in the presence of missing covariate data. Computational techniques using the Gibbs sampler are implemented. A real data set involving a melanoma cancer clinical trial is examined to demonstrate the methodology.
我们提出了用于具有治愈比例的新型半参数生存模型的缺失协变量数据的贝叶斯推断方法。我们允许缺失的协变量为分类变量或连续变量,并为协变量指定一个参数分布,该分布被写为一维条件分布的序列。我们假设整个过程中缺失的协变量是随机缺失(MAR)的。我们为回归系数和协变量分布产生的参数提出了一类信息丰富的联合先验分布。所提出的先验类别被证明在恢复关于缺失协变量的信息方面很有用,特别是在缺失数据比例较大的情况下。研究了所提出的先验和所得后验分布的性质。此外,还提出了模型检验技术用于敏感性分析和检验特定模型的拟合优度。具体来说,我们扩展了条件预测纵坐标(CPO)统计量以评估存在缺失协变量数据时的拟合优度。实现了使用吉布斯采样器的计算技术。研究了一个涉及黑色素瘤癌症临床试验的真实数据集以证明该方法。