Beesley Lauren J, Bartlett Jonathan W, Wolf Gregory T, Taylor Jeremy M G
Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A..
Statistical Innovation Group, AstraZeneca, Cambridge, U.K.
Stat Med. 2016 Nov 20;35(26):4701-4717. doi: 10.1002/sim.7048. Epub 2016 Jul 21.
We explore several approaches for imputing partially observed covariates when the outcome of interest is a censored event time and when there is an underlying subset of the population that will never experience the event of interest. We call these subjects 'cured', and we consider the case where the data are modeled using a Cox proportional hazards (CPH) mixture cure model. We study covariate imputation approaches using fully conditional specification. We derive the exact conditional distribution and suggest a sampling scheme for imputing partially observed covariates in the CPH cure model setting. We also propose several approximations to the exact distribution that are simpler and more convenient to use for imputation. A simulation study demonstrates that the proposed imputation approaches outperform existing imputation approaches for survival data without a cure fraction in terms of bias in estimating CPH cure model parameters. We apply our multiple imputation techniques to a study of patients with head and neck cancer. Copyright © 2016 John Wiley & Sons, Ltd.
当感兴趣的结局是删失事件时间,且存在一部分人群永远不会经历感兴趣的事件时,我们探索了几种推算部分观测协变量的方法。我们将这些个体称为“治愈者”,并考虑使用Cox比例风险(CPH)混合治愈模型对数据进行建模的情况。我们使用完全条件设定研究协变量推算方法。我们推导了精确的条件分布,并提出了一种在CPH治愈模型设定中推算部分观测协变量的抽样方案。我们还提出了几种对精确分布的近似方法用于推算,这些方法更简单且更便于使用。一项模拟研究表明,在估计CPH治愈模型参数时,就偏差而言,所提出的推算方法优于现有的针对无治愈比例生存数据的推算方法。我们将多重推算技术应用于一项头颈癌患者的研究。版权所有© 2016约翰·威利父子有限公司。