Suppr超能文献

用于Cox比例风险治愈模型的缺失协变量的多重填补

Multiple imputation of missing covariates for the Cox proportional hazards cure model.

作者信息

Beesley Lauren J, Bartlett Jonathan W, Wolf Gregory T, Taylor Jeremy M G

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A..

Statistical Innovation Group, AstraZeneca, Cambridge, U.K.

出版信息

Stat Med. 2016 Nov 20;35(26):4701-4717. doi: 10.1002/sim.7048. Epub 2016 Jul 21.

Abstract

We explore several approaches for imputing partially observed covariates when the outcome of interest is a censored event time and when there is an underlying subset of the population that will never experience the event of interest. We call these subjects 'cured', and we consider the case where the data are modeled using a Cox proportional hazards (CPH) mixture cure model. We study covariate imputation approaches using fully conditional specification. We derive the exact conditional distribution and suggest a sampling scheme for imputing partially observed covariates in the CPH cure model setting. We also propose several approximations to the exact distribution that are simpler and more convenient to use for imputation. A simulation study demonstrates that the proposed imputation approaches outperform existing imputation approaches for survival data without a cure fraction in terms of bias in estimating CPH cure model parameters. We apply our multiple imputation techniques to a study of patients with head and neck cancer. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

当感兴趣的结局是删失事件时间,且存在一部分人群永远不会经历感兴趣的事件时,我们探索了几种推算部分观测协变量的方法。我们将这些个体称为“治愈者”,并考虑使用Cox比例风险(CPH)混合治愈模型对数据进行建模的情况。我们使用完全条件设定研究协变量推算方法。我们推导了精确的条件分布,并提出了一种在CPH治愈模型设定中推算部分观测协变量的抽样方案。我们还提出了几种对精确分布的近似方法用于推算,这些方法更简单且更便于使用。一项模拟研究表明,在估计CPH治愈模型参数时,就偏差而言,所提出的推算方法优于现有的针对无治愈比例生存数据的推算方法。我们将多重推算技术应用于一项头颈癌患者的研究。版权所有© 2016约翰·威利父子有限公司。

相似文献

引用本文的文献

4
Multiple imputation with missing data indicators.带有缺失数据指标的多重插补。
Stat Methods Med Res. 2021 Dec;30(12):2685-2700. doi: 10.1177/09622802211047346. Epub 2021 Oct 13.
8
Cox regression model with randomly censored covariates.具有随机删失协变量的Cox回归模型。
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.
10
EM algorithms for fitting multistate cure models.用于拟合多状态治愈模型的 EM 算法。
Biostatistics. 2019 Jul 1;20(3):416-432. doi: 10.1093/biostatistics/kxy011.

本文引用的文献

2
Joint modelling rationale for chained equations.联立方程的联合建模原理。
BMC Med Res Methodol. 2014 Feb 21;14:28. doi: 10.1186/1471-2288-14-28.
6
Using the outcome for imputation of missing predictor values was preferred.使用结果来插补缺失的预测变量值是更可取的。
J Clin Epidemiol. 2006 Oct;59(10):1092-101. doi: 10.1016/j.jclinepi.2006.01.009. Epub 2006 Jun 19.
10
A nonparametric mixture model for cure rate estimation.一种用于治愈率估计的非参数混合模型。
Biometrics. 2000 Mar;56(1):237-43. doi: 10.1111/j.0006-341x.2000.00237.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验